Dating the onset of Variscan crustal exhumation in the core of the Bohemian Massif: new U–Pb single zircon ages from the high-K calc-alkaline granodiorites of the Blatná suite, Central Bohemian Plutonic Complex

2010 ◽  
Vol 167 (2) ◽  
pp. 347-360 ◽  
Author(s):  
Vojtĕch Janoušek ◽  
Bettina A. Wiegand ◽  
Jiří Žák
2010 ◽  
Vol 57 (1-2) ◽  
pp. 79-95 ◽  
Author(s):  
Maurice Kwékam ◽  
Jean-Paul Liégeois ◽  
Emmanuel Njonfang ◽  
Pascal Affaton ◽  
Gerald Hartmann ◽  
...  

2017 ◽  
Vol 34 (1) ◽  
pp. 45 ◽  
Author(s):  
Elizard González-Becuar ◽  
Efrén Pérez-Segura ◽  
Ricardo Vega-Granillo ◽  
Luigi Solari ◽  
Carlos Manuel González-León ◽  
...  

Plutonic rocks of the Puerta del Sol area, in central Sonora, represent the extension to the south of the El Jaralito batholith, and are part of the footwall of the Sierra Mazatán metamorphic core complex, whose low-angle detachment fault bounds the outcrops of plutonic rocks to the west. Plutons in the area record the magmatic evolution of the Laramide arc and the Oligo-Miocene syn-extensional plutonism in Sonora. The basement of the area is composed by the ca. 1.68 Ga El Palofierral orthogneiss that is part of the Caborca block. The Laramide plutons include the El Gato diorite (71.29 ± 0.45 Ma, U-Pb), the El Pajarito granite (67.9 ± 0.43 Ma, U-Pb), and the Puerta del Sol granodiorite (49.1 ± 0.46 Ma, U-Pb). The younger El Oquimonis granite (41.78 ± 0.32 Ma, U-Pb) is considered part of the scarce magmatism that in Sonora records a transition to the Sierra Madre Occidental magmatic event. The syn-extensional plutons are the El Garambullo gabbro (19.83 ± 0.18 Ma, U-Pb) and the Las Mayitas granodiorite (19.2 ± 1.2 Ma, K-Ar). A migmatitic event that affected the El Palofierral orthogneiss, El Gato diorite, and El Pajarito granite between ca. 68 and 59 Ma might be related to the emplacement of the El Pajarito granite. The plutons are metaluminous to slightly peraluminous, with the exception of El Oquimonis granite, which is a peraluminous two-mica, garnet-bearing granite. They are mostly high-K calc-alkaline with nearly uniform chondrite-normalized REE and primitive-mantle normalized multielemental patterns that are characteristic of continental margin arcs and resemble patterns reported for other Laramide granites of Sonora. The Laramide and syn-extensional plutons also have Sr, Nd and Pb isotopic ratios that plot within the fields reported for Laramide granites emplaced in the Caborca terrane in northwestern and central Sonora. Nevertheless, and despite their geochemical affinity to continental magmatic arcs, the El Garambullo gabbro and Las Mayitas granodiorite are syn-extensional plutons that were emplaced at ca. 20 Ma during development of the Sierra Mazatán metamorphic core complex. The 40Ar/39Ar and K-Ar ages obtained for the El Palofierral orthogneiss, the Puerta del Sol granodiorite, the El Oquimonis granite, and the El Garambullo gabbro range from 26.3 ± 0.6 to 17.4 ± 1.0 Ma and are considered cooling ages associated with the exhumation of the metamorphic core complex.


2020 ◽  
Vol 117 (35) ◽  
pp. 21125-21131 ◽  
Author(s):  
Jing-Liang Guo ◽  
Zaicong Wang ◽  
Wen Zhang ◽  
Frédéric Moynier ◽  
Dandan Cui ◽  
...  

Zircons widely occur in magmatic rocks and often display internal zonation finely recording the magmatic history. Here, we presented in situ high-precision (2SD <0.15‰ for δ94Zr) and high–spatial-resolution (20 µm) stable Zr isotope compositions of magmatic zircons in a suite of calc-alkaline plutonic rocks from the juvenile part of the Gangdese arc, southern Tibet. These zircon grains are internally zoned with Zr isotopically light cores and increasingly heavier rims. Our data suggest the preferential incorporation of lighter Zr isotopes in zircon from the melt, which would drive the residual melt to heavier values. The Rayleigh distillation model can well explain the observed internal zoning in single zircon grains, and the best-fit models gave average zircon–melt fractionation factors for each sample ranging from 0.99955 to 0.99988. The average fractionation factors are positively correlated with the median Ti-in-zircon temperatures, indicating a strong temperature dependence of Zr isotopic fractionation. The results demonstrate that in situ Zr isotope analyses would be another powerful contribution to the geochemical toolbox related to zircon. The findings of this study solve the fundamental issue on how zircon fractionates Zr isotopes in calc-alkaline magmas, the major type of magmas that led to forming continental crust over time. The results also show the great potential of stable Zr isotopes in tracing magmatic thermal and chemical evolution and thus possibly continental crustal differentiation.


2021 ◽  
pp. 1-22
Author(s):  
Jia-Hao Jing ◽  
Hao Yang ◽  
Wen-Chun Ge ◽  
Yu Dong ◽  
Zheng Ji ◽  
...  

Abstract Late Mesozoic igneous rocks are important for deciphering the Mesozoic tectonic setting of NE China. In this paper, we present whole-rock geochemical data, zircon U–Pb ages and Lu–Hf isotope data for Early Cretaceous volcanic rocks from the Tulihe area of the northern Great Xing’an Range (GXR), with the aim of evaluating the petrogenesis and genetic relationships of these rocks, inferring crust–mantle interactions and better constraining extension-related geodynamic processes in the GXR. Zircon U–Pb ages indicate that the rhyolites and trachytic volcanic rocks formed during late Early Cretaceous time (c. 130–126 Ma). Geochemically, the highly fractionated I-type rhyolites exhibit high-K calc-alkaline, metaluminous to weakly peraluminous characteristics. They are enriched in light rare earth elements (LREEs) and large-ion lithophile elements (LILEs) but depleted in high-field-strength elements (HFSEs), with their magmatic zircons ϵHf(t) values ranging from +4.1 to +9.0. These features suggest that the rhyolites were derived from the partial melting of a dominantly juvenile, K-rich basaltic lower crust. The trachytic volcanic rocks are high-K calc-alkaline series and exhibit metaluminous characteristics. They have a wide range of zircon ϵHf(t) values (−17.8 to +12.9), indicating that these trachytic volcanic rocks originated from a dominantly lithospheric-mantle source with the involvement of asthenospheric mantle materials, and subsequently underwent extensive assimilation and fractional crystallization processes. Combining our results and the spatiotemporal migration of the late Early Cretaceous magmatic events, we propose that intense Early Cretaceous crust–mantle interaction took place within the northern GXR, and possibly the whole of NE China, and that it was related to the upwelling of asthenospheric mantle induced by rollback of the Palaeo-Pacific flat-subducting slab.


2021 ◽  
pp. M55-2018-68 ◽  
Author(s):  
Philip T. Leat ◽  
Teal R. Riley

AbstractThe Antarctic Peninsula contains a record of continental-margin volcanism extending from Jurassic to Recent times. Subduction of the Pacific oceanic lithosphere beneath the continental margin developed after Late Jurassic volcanism in Alexander Island that was related to extension of the continental margin. Mesozoic ocean-floor basalts emplaced within the Alexander Island accretionary complex have compositions derived from Pacific mantle. The Antarctic Peninsula volcanic arc was active from about Early Cretaceous times until the Early Miocene. It was affected by hydrothermal alteration, and by regional and contact metamorphism generally of zeolite to prehnite–pumpellyite facies. Distinct geochemical groups recognized within the volcanic rocks suggest varied magma generation processes related to changes in subduction dynamics. The four groups are: calc-alkaline, high-Mg andesitic, adakitic and high-Zr, the last two being described in this arc for the first time. The dominant calc-alkaline group ranges from primitive mafic magmas to rhyolite, and from low- to high-K in composition, and was generated from a mantle wedge with variable depletion. The high-Mg and adakitic rocks indicate periods of melting of the subducting slab and variable equilibration of the melts with mantle. The high-Zr group is interpreted as peralkaline and may have been related to extension of the arc.


Sign in / Sign up

Export Citation Format

Share Document