scholarly journals Syn-collisional pan-African granite in the northern part Birnin Gwari schist belt in NW Nigeria

2020 ◽  
Vol 8 (2) ◽  
pp. 197
Author(s):  
Kehinde Oluyede ◽  
Urs Klötzli

Syn-collisional granite in the northern part of the Birnin Gwari schist belt consists dominantly of granite and lesser granodiorite and quartzolite. Petrographic and ge¬ochemical data revealed three granite groups: the biotite-hornblende granite (quartzolite - BHG); the biotite granite (BG) and the biotite-muscovite granite (BMG). The rocks generally have calc-alkaline and high-K calc-alkaline affinities, and calc-alkalic to alkali-calcic, peraluminous and ferroan and magnesian geochemistry. They are characterized by LILE enrichment, high LREE fractionation factor [(La/Yb) (6.74 to 45.14] with weak to moderate negative Eu (Eu/Eu* = 0.38 to 0.62) and strong negative Nb, P and Ti anomalies. Variation in the behavior of lithophile elements (Ba, Sr and Rb) revealed diverse granite trend such as “high and low Ba-Sr”; “normal”, “anomalous” “strongly differentiated” and “granodiorite and quartz diorite” granite. Their display of similar trace elements and REE patterns suggest they are cogenetic. Major and trace element data indicate differentiation of a mafic magma and partial melting of crustal components inherited from shale-greywacke and quartzose sedimentary protoliths in volcanic arc and post collisional settings. The field and geochemical characteristics of this granite suggest that they are similar to other granites in schist belts in other parts of Nigeria, forming the lateral continuation of the same Pan-African magmatic belt.   

2020 ◽  
Vol 9 (2) ◽  
pp. 66
Author(s):  
Diontar Mbaihoudou ◽  
Kwékam Maurice ◽  
Fozing Eric Martial ◽  
Kagou Dongmo Armand ◽  
Tcheumenak Kouémo Jules

The granitoids of Guéra Massif are composed of biotite-granite, amphibole-biotite granite and gabbro-diorite and commonly contain micro granular mafic enclaves which vary from monzogabbro to syenite composition. They are metaluminous, high-K calc-alkaline to shoshonitic series. Gabbro-diorite rocks are magnesian while amphibole-biotite granites are magnesian to ferroan, and biotite granites are ferroan. They are enriched in LREEs relative to HREE and display negative anomalies in Nb, Ta and Ti. Fields relationships, petrology and geochemistry indicate that mixing and mingling processes could be more relevant for the genesis of granitoids associated to fractional crystallization. Thus, the presence of mafic enclaves of gabbro-diorite composition in the granites, the resumption of alkaline feldspar xenocrystals in the gabbro-diorites, as well as the linear correlation between the granites and the gabbro-diorites and the intermediate position of the mafic enclaves between the two formations, enable us to propose magmatic mixing as the major process that presided over the evolution of the Guéra granitoids. The delamination of the continental lithosphere during the post-collisional phase of the Pan-African orogeny would have caused the partial melting of the subduction-modofied mantle and lower continental crust and thus produced the magmas of the Guéra granitoids.


2004 ◽  
Vol 40 (3-4) ◽  
pp. 115-136 ◽  
Author(s):  
M. Eyal ◽  
B.A. Litvinovsky ◽  
Y. Katzir ◽  
A.N. Zanvilevich
Keyword(s):  

2020 ◽  
Vol 191 ◽  
pp. 34 ◽  
Author(s):  
Félix Djerossem ◽  
Julien Berger ◽  
Olivier Vanderhaeghe ◽  
Moussa Isseini ◽  
Jérôme Ganne ◽  
...  

This paper presents new petrological, geochemical, isotopic (Nd) and geochronological data on magmatic rocks from the poorly known southern Ouaddaï massif, located at the southern edge of the so-called Saharan metacraton. This area is made of greenschist to amphibolite facies metasediments intruded by large pre- to syn-tectonic batholiths of leucogranites and an association of monzonite, granodiorite and biotite granite forming a late tectonic high-K calc-alkaline suite. U-Pb zircon dating yields ages of 635 ± 3 Ma and 613 ± 8 Ma on a peraluminous biotite-leucogranite (containing numerous inherited Archean and Paleoproterozoic zircon cores) and a muscovite-leucogranite, respectively. Geochemical fingerprints are very similar to some evolved Himalayan leucogranites suggesting their parental magmas were formed after muscovite and biotite dehydration melting of metasedimentary rocks. A biotite-granite sample belonging to the late tectonic high-K to shoshonitic suite contains zircon rims that yield an age of 540 ± 5 Ma with concordant inherited cores crystallized around 1050 Ma. Given the high-Mg# (59) andesitic composition of the intermediate pyroxene-monzonite, the very similar trace-element signature between the different rock types and the unradiogenic isotopic signature for Nd, the late-kinematic high-K to shoshonitic rocks formed after melting of the enriched mantle and further differentiation in the crust. These data indicate that the southern Ouaddaï was part of the Pan-African belt. It is proposed that it represents a continental back-arc basin characterized by a high-geothermal gradient during Early Ediacaran leading to anatexis of middle to lower crustal levels. After tectonic inversion during the main Pan-African phase, late kinematic high-K to shoshonitic plutons emplaced during the final post-collisional stage.


2020 ◽  
Vol 50 ◽  
pp. 23-44
Author(s):  
Boldbaatar Dolzodmaa ◽  
Yasuhito Osanai ◽  
Nobuhiko Nakano ◽  
Tatsuro Adachi

The Central Asian Orogenic Belt had been formed by amalgamation of voluminous subduction–accretionary complexes during the Late Neoproterozoic to the Mesozoic period. Mongolia is situated in the center of this belt. This study presents new zircon U–Pb geochronological, whole-rock major and trace element data for granitoids within central Mongolia and discusses the tectonic setting and evolution of these granitic magmas during their formation and emplacement. The zircon U–Pb ages indicate that the magmatism can be divided into three stages: the 564–532 Ma Baidrag granitoids, the 269–248 and 238–237 Ma Khangai granitoids. The 564–532 Ma Baidrag granitoids are adakitic, have an I-type affinity, and were emplaced into metamorphic rocks. In comparison, the 269–248 Ma granitoids have high-K, calc-alkaline, granodioritic compositions and are I-type granites, whereas the associated the 238–237 Ma granites have an A-type affinity. The 564–532 Ma Baidrag and 269–248 Ma Khangai granitoids also both have volcanic arc-type affinities, whereas the 238–237 Ma granites formed in a post-collisional tectonic setting. These geochronological and geochemical results suggest that arc magmatism occurred at the 564–532 Ma which might be the oldest magmatic activity in central Mongolia. Between the Baidrag and the Khangai, there might be paleo-ocean and the oceanic plate subducted beneath the Khangai and produced voluminous granite bodies during the 269–248 Ma. After the closure of the paleo-ocean, the post collisional granitoids were formed at the 238–237 Ma based on the result of later granitoids in the Khangai area.


2021 ◽  
Vol 50 (2) ◽  
pp. 315-326
Author(s):  
Oluwatoyin O. Akinola ◽  
Azman A. Ghani ◽  
Elvaene James

Idanre granite batholith in southwestern Nigeria contain three rock types, namely, Older granite undifferentiated (OGu), Older granite porphyritic (OGp) and Older granite fine-grained (OGf). The granitoids intruded into a basement rock of primarily migmatite gneiss. Petrography indicates that quartz, orthoclase, hornblende, and biotite are common to all members while microcline is more prominent in OGp and plagioclase is poorly represented in OGf. Despite minor differences in petrographic features, the granite units generally have similar geochemical relationships. The average SiO2 contents in OGp (70.49%), OGu (68.7%) and OGf (65.8%) are comparable to similar Pan-African suites located in eastern and northern Nigeria. Na2O+K2O-CaO versus SiO2 diagram shows all the granite members are calcic, K2O vs SiO2 plot classify the granites as high-K calcic alkali to shoshonitic. ANK vs ACNK plot indicatesthey are peraluminous. Plot of A/CNK vs SiO2 and K2O vs Na2O diagrams classified the rock as S-type granite. The granitoids are calc-alkaline with elevated Na2O (>2.6%) and Al/(Na2O+CaO) contents (OGu, 2.1-3.4; OGp, 2.4-3.1 and OGf, 2.2-2.9). The tectonic diagram (Rb vs (Y+Nb) indicatesthatthe batholith is Within Plate Granite (WPG.


2021 ◽  
Vol 9 ◽  
Author(s):  
Tang Yong ◽  
Zhang Hui ◽  
Lv Zheng-Hang

The Askartor Be-Mo deposit is located in the southeastern area of the Chinese Altay orogenic belt in Xinjiang, NW China. Zircon U-Pb data show that there are two periods of magmatic activities in the Askartor Be-Mo ore district, namely, the Devonian granodiorite (386.8 ± 2.6 Ma) and biotite granite (385.4 ± 4.4 Ma), and the Triassic two-mica granite (247.5 ± 2.2 Ma) and muscovite granite (231.4 ± 2.0 Ma). The zircon U-Pb age of pegmatoid orebody is 220.6 ± 1.6 Ma which coincides with the molybdenite Re-Os isochron age of 228.7 ± 7.1 Ma. The two-mica and muscovite granites belong to the high-K Calc-alkaline series with peraluminous features, and are characterized by high SiO2 (71.92–75.41 wt%), and Al2O3 (13.43–15.98 wt%), and low TiO2 (0.01–0.25 wt%), Fe2O3 (0.11–1.14 wt%) and CaO (0.07–0.76 wt%). The highly fractionated element ratios of Y/Ho, Zr/Hf and Nb/Ta, and the rare earth element tetrad effect occur in the muscovite granite, indicating the fluid exsolution occurs at the late stage of magma evolution, and the muscovite granite experienced the strong self-metasomatism. Rayleigh fractional calculations show that the Askartor Be-Mo deposit is the product of multistage fractional crystallization of initial Be-enriched magma.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Win Khant ◽  
I Wayan Warmada ◽  
Arifudin Idrus ◽  
Lucas Donny Setijadji ◽  
Koichiro Watanabe

The Soripesa prospect area is located at Maria village, Wawo district, Bima region in the eastern part of Sumbawa Island, Indonesia. This area is a part of Cenozoic Calc-alkaline volcanic inner Banda- Sunda Arc. There are five main polymetallic epithermal quartz veins in the Soripesa prospect area, namely, Rini vein, Jambu air vein, Dollah vein,Merpati vein, and Arif vein. The dominant lithology is a lithic-crystal tuff of andesitic and dacitic composition and bedded limestone. Major oxides and trace elements were analyzed by using X-Ray Fluorescence (XRF) to identify the host rock geochemistry. The main veins are hosted by andesitic and andesitic/ basaltic volcanic host rocks. Major elements compositions are affected by alteration. Based on the trace element data, host rocks of all veins were formed in the volcanic arc basalt (VAB) and island arc basalt (IAB) tectonic settings. Host rocks of Rini vein contain higher amount of precious and base metal elements (Zn, Cu, Pb, and Ag.etc.) than those of other host rocks. Keywords: Soripesa prospect area, lithology, tectonic setting, mineralization.


1989 ◽  
Vol 26 (4) ◽  
pp. 716-736 ◽  
Author(s):  
D. C. Peck ◽  
T. E. Smith

The geology of the Cartwright Lake area consists of a >2 km thick conformable sequence of Early Proterozoic supracrustal rocks intruded by calc-alkaline granitoid plutons. The supracrustal succession comprises a basal series of tholeiitic basalts, an overlying bimodal sequence, and an uppermost series of calc-alkaline andesites. The bimodal sequence incorporates abundant tholeiitic basalts and associated mafic tuffs, lesser felsic hyaloclastites and pyroclastics, and minor interflow greywacke–mudstone turbidites.Petrogenetic models involving trace-element concentrations indicate that most of the extrusive and intrusive rocks were derived from similar parent magmas that formed by extensive partial melting of a garnet lherzolite upper-mantle source. The parent liquids fractionated along an early tholeiitic trend and a later calc-alkaline trend, producing the observed geochemical variations in the mafic and intermediate volcanic assemblages. Ponding of mafic magma at the base of the crust may have promoted crustal fusion, thereby generating felsic liquids, which erupted and formed the dacite–rhyolite suite.The geology and geochemistry of the volcanic assemblages are consistent with a subduction-related origin in a volcanic-arc setting. The majority of geochemical evidence favours the interpretation that the Cartwright Lake segment of the arc developed on relatively thin sialic crust.


1985 ◽  
Vol 22 (8) ◽  
pp. 1204-1216 ◽  
Author(s):  
Lee C. Pigage ◽  
Robert G. Anderson

The Anvil plutonic suite consists of three phases: a peraluminous muscovite–biotite granite (Mount Mye phase) and two metaluminous to peraluminous hornblende–biotite granodiorite and minor granite intrusions (Orchay and Marjorie phases). The suite is massive or foliated, equigranular or seriate, and contains alkali-feldspar megacrysts. The Marjorie phase is characteristically porphyritic.Geochemical trends are irregular for the suite and for individual phases. High-K2O, low-CaO, and low-MgO compositions typify the silicic, calc-alkaline suite. Hornblende-bearing phases contain less SiO2, K2O, and Rb and more cafemic oxides, TiO2, Sr, Ba, and Y than the Mount Mye phase and are compositionally similar to coeval South Fork volcanics.Isochrons from some of the Orchay phase whole-rock samples (t = 99 ± 2.5 Ma; 87Sr/86Sri = 0.7161 ± 0.0001) and from whole rocks and minerals of the Mount Mye phase (t = 100 ± 2 Ma; 87Sr/86Sri = 0.7405 ± 0.0001) indicate they are coeval but not comagmatic, accounting for the lithologic, petrographic, and geochemical distinctions. Similar K–Ar isotopic ages (81–102 Ma) suggest rapid cooling and therefore high-level emplacement. Together, the isotopic ages provide a minimum (youngest) age for the main deformation of the surrounding metasediments and a maximum (oldest) age for movement along the Tintina Fault.A petrographically and geochemically distinct sample from the Orchay phase yielded a Rb–Sr isochron age of 61 ± 1.5 Ma and an initial 87Sr/86Sr ratio of 0.7090 ± 0.0001, implying intrusive activity in the Paleocene.Field relations, lithology, petrography, geochronometry, and geochemistry suggest that the Orchay and Marjorie phases are plutonic equivalents of the South Fork volcanics. Similarities in plutonic style characterize the extensive mid-Cretaceous igneous event in southeast Yukon.


2006 ◽  
Vol 78 (2) ◽  
pp. 345-371 ◽  
Author(s):  
Renato J. Leite ◽  
Valdecir A. Janasi ◽  
Lucelene Martins

The Piedade Granite (~600 Ma) was emplaced shortly after the main phase of granite magmatism in the Agudos Grandes batholith, Apiaí-Guaxupé Terrane, SE Brazil. Its main units are: mafic mineral-rich porphyritic granites forming the border (peraluminous muscovite-biotite granodiorite-monzogranite MBmg unit) and core (metaluminous titanite-bearing biotite monzogranite BmgT unit) and felsic pink inequigranular granite (Bmg unit) between them. Bmg has high LaN/YbN (up to 100), Th/U (>10) and low Rb, Nb and Ta, and can be a crustal melt derived from deep-seated sources with residual garnet and biotite. The core BmgT unit derived from oxidized magmas with high Mg# (~45), Ba and Sr, fractionated REE patterns (LaN/YbN= 45), 87Sr/86Sr(t)~ 0.710, epsilonNd(t) ~ -12 to -14, interpreted as being high-K calc-alkaline magmas contaminated with metasedimentary rocks that had upper-crust signature (high U, Cs, Ta). The mafic-rich peraluminous granites show a more evolved isotope signature (87Sr/86Sr(t) = 0.713-0.714; epsilonNd(t)= -14 to -16), similar to Bmg, and Mg# and incompatible trace-element concentrations intermediate between Bmg and BmgT. A model is presented in whichMBmgis envisaged as the product of contamination between a mafic mineral-rich magma consanguineous with BmgT and pure crustal melts akin to Bmg.


Sign in / Sign up

Export Citation Format

Share Document