Deep-sea trace fossils and depositional model from the lower Miocene Tiaret Marl Formation (northwestern Algeria)

2021 ◽  
Vol 175 ◽  
pp. 104115
Author(s):  
Amine Cherif ◽  
Mohammed Nadir Naimi ◽  
Mourad Belaid
2022 ◽  
Vol 128 (1) ◽  
Author(s):  
ANDREA BAUCON ◽  
GIROLAMO LO RUSSO ◽  
CARLOS NETO DE CARVALHO ◽  
FABRIZIO FELLETTI

The Italian Northern Apennines are acknowledged as the place where ichnology was born, but there is comparatively little work about their ichnological record. This study bridges this gap by describing two new ichnosites from the locality of Pierfrancesco, which preserve an abundant, low-disparity trace-fossil assemblage within the Late Cretaceous beds of the M. Cassio Flysch. Results show that lithofacies and ichnotaxa are rhythmically organized. The base of each cycle consists of Megagrapton-bearing calciclastic turbidites, which are overlain by marlstone beds with an abundant, low-disparity assemblage of trace fossils. This includes Chondrites intricatus, C. patulus, C. targionii, C. recurvus and Cladichnus fischeri. The cycle top consists of mudstones with no distinct burrows. The rhythmic pattern of Pierfrancesco reflects a deep-sea ecological succession, in which species and behaviour changed as turbidite-related disturbances altered the seafloor. This study opens the question of whether the Chondrites-Cladichnus ichnocoenosis represents low-oxygen or nutrient-poor settings.


2010 ◽  
Vol 84 (6) ◽  
pp. 1015-1021
Author(s):  
Michael A. Kaminski ◽  
Alfred Uchman ◽  
Andrew K. Rindsberg

Arthrodendron maguricum n. sp. is described from deep-sea flysch of the lower Eocene Życzanów Conglomerate Member of the Szczawnica Formation (Magura Unit) in the Polish Carpathians. Arthrodendron maguricum is a larger agglutinated foraminifer showing regular, tubular chambers that may branch dichotomously. Its wall is tripartite and composed of an outer organic-rich layer, a main agglutinated layer, and an internal organic-rich layer. The organism evidently lived as epibenthos on the muddy sea floor. Because of their branching morphology and comparatively large dimensions, larger agglutinated foraminifera of the genus Arthrodendron have previously been confused with algae and trace fossils. Care should be taken in such cases to resolve the agglutinated wall and chambers of this deep-water agglutinated foraminifer. Arthrodendron maguricum displays superficial similarities to some modern komokiaceans, especially to Septuma. Further investigations are needed for clarification of their affinities and possible taxonomic consequences.


1992 ◽  
Vol 6 ◽  
pp. 76-76
Author(s):  
T. Peter Crimes

Cambrian deep-sea sediments have yielded few trace fossils. The first moderately diverse suite is found in an Arenig flysch sequence in Eire. There followed a gradual increase in diversity and abundance of trace fossils in deep-sea niches in the Palaeozoic and early Mesozoic. A major burst of behaviourial evolution appears to have taken place during the Cretaceous and, from then through the Tertiary, high levels of trace fossil abundance and diversity were maintained. This is confirmed by recent work on Miocene deep-sea sequences and from a superbly preserved, diverse, ichnofauna recently discovered in strata of Oligocene and Miocene age in the Makran Range of Iran.In the past, it has been inferred that there was a gradual improvement in behavioral programming in deep-sea traces, with a trend towards economy of effort and perfection. However, Lower Palaeozoic deep water traces show careful, complex, behavioral programming which was to change little through the rest of the Phanerozoic.Within the deep-sea, there are, however, significant variations in the ichnospectrum in different niches. For example, the inner parts of seep-sea sand fans, particularly the channelled areas, have a mixture of “deep” and “shallow” water traces, whereas the outer fan normally has only deep water forms.


Author(s):  
M. J. Benton

ABSTRACTThe Ordovician and Silurian rocks of the Southern Uplands of Scotland have been interpreted as sediments deposited on the northern margin of the Iapetus Ocean. Trace fossils are abundant at many localities in ocean-floor turbidites and mudstones that usually lack all other evidence of life. Twelve ichnogenera are present, and they are mainly meandering locomotion and feeding trails and burrow networks: Dictyodora, Caridolites, Helminthoida, Neonereites, Nereites, Protovirgularia, Gordia, Megagrapton, Paleodictyon, Chondrites, Plano-lites and Skolithos. The trace fossils occur in at least five distinct assemblages and the composition of these was probably controlled by the frequency and nature of the turbidity currents, and possibly by the oxygen content of the mudstones. Where turbidity currents were weak, abundant Dictyodora, together with Caridolites, Neonereites, Nereites, Protovirgularia and Gordia occur in various combinations. Where currents were stronger, traces such as Gordia, Paleodictyon and Megagrapton may be exhumed and cast on turbidite soles, and the sand may contain Skolithos. The ‘deep-sea’ Nereites trace fossil facies is divisible into several assemblages, presumably environmentally controlled.


1983 ◽  
Vol 120 (4) ◽  
pp. 363-373 ◽  
Author(s):  
N. Molenaar ◽  
A. J. De Feyter

Summary. A distinctive level of bedded, internally laminated, deep-sea cherts in the area west of Città di Castello, central Apennins, has been studied. These cherts form part of the Lower Miocene Monte Santa Maria Tiberina Formation, and belong to the Tuscan sequence, consisting of pelagic and turbidic sediments. The sediment is enriched in diatoms and Radiolaria. The diatoms provided silica as well as barium, now present as submicroscopical baryte concretions. Synsedimentary volcanism could have provided silica as well, through calcitization of volcanic fragments within the sediment. Since the laminations display early diagenetic microdeformations,. it can be concluded that the cherts themselves are an early diagenetic feature.


Sign in / Sign up

Export Citation Format

Share Document