sea sand
Recently Published Documents





2022 ◽  
Vol 320 ◽  
pp. 126222
Davoud Vafaei ◽  
Xing Ma ◽  
Reza Hassanli ◽  
Jinming Duan ◽  
Yan Zhuge

2022 ◽  
pp. 136943322110651
Ruiming Cao ◽  
Bai Zhang ◽  
Luming Wang ◽  
Jianming Ding ◽  
Xianhua Chen

Alkali-activated materials (AAMs) are considered an eco-friendly alternative to ordinary Portland cement (OPC) for mitigating greenhouse-gas emissions and enabling efficient waste recycling. In this paper, an innovative seawater sea-sand concrete (SWSSC), that is, seawater sea-sand alkali-activated concrete (SWSSAAC), was developed using AAMs instead of OPC to explore the application of marine resources and to improve the durability of conventional SWSSC structures. Then, three types of fiber-reinforced polymer (FRP) bars, that is, basalt-FRP, glass-FRP, and carbon-FRP bars, were selected to investigate their bond behavior with SWSSAAC at different alkaline dosages (3%, 4%, and 6% Na2O contents). The experimental results manifested that the utilization of the alkali-activated binders can increase the splitting tensile strength ( ft) of the concrete due to the denser microstructures of AAMs than OPC pastes. This improved characteristic was helpful in enhancing the bond performance of FRP bars, especially the slope of bond-slip curves in the ascending section (i.e., bond stiffness). Approximately three times enhancement in terms of the initial bond rigidity was achieved with SWSSAAC compared to SWSSC at the same concrete strength. Furthermore, compared with the BFRP and GFRP bars, the specimens reinforced with the CFRP bars experienced higher bond strength and bond rigidity due to their relatively high tensile strength and elastic modulus. Additionally, significant improvements in initial bond stiffness and bond strength were also observed as the alkaline contents (i.e., concrete strength) of the SWSSAAC were aggrandized, demonstrating the integration of the FRP bars and SWSSAAC is achievable, which contributes to an innovative channel for the development of SWSSC pavements or structures.

Fibers ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 8
Johanna Dorothea Luck ◽  
Milad Bazli ◽  
Ali Rajabipour

Using fibre-reinforced polymers (FRP) in construction avoids corrosion issues associated with the use of traditional steel reinforcement, while seawater and sea sand concrete (SWSSC) reduces environmental issues and resource shortages caused by the production of traditional concrete. The paper gives an overview of the current research on the bond performance between FRP tube and concrete with particular focus on SWSSC. The review follows a thematic broad-to-narrow approach. It reflects on the current research around the significance and application of FRP and SWSSC and discusses important issues around the bond strength and cyclic behaviour of tubular composites. A review of recent studies of bond strength between FRP and concrete and steel and concrete under static or cyclic loading using pushout tests is presented. In addition, the influence of different parameters on the pushout test results are summarised. Finally, recommendations for future studies are proposed.

2022 ◽  
pp. 136943322110273
Lingzhu Zhou ◽  
Yu Zheng ◽  
Linsheng Huo ◽  
Yuxiao Ye ◽  
Xiaolu Wang ◽  

This paper aims to study the fracture behaviors of high-volume fly ash-self-compacting concrete (HVFA-SCC) mixed with seawater and sea-sand (SWSS) or freshwater and river sand (FWRS). Three-point bending test were performed on 24 notched beams fabricated with varying in replacement ratio of fly ash (0%, 30%, 50%, and 70%) and the type of water and sand (SWSS and FWRS). The initial and unstable fracture toughness of these test specimens are determined by the double- K fracture model. The effect of fly ash replacement ratio and type of water and sand on the fracture parameters is analyzed and discussed. In addition, the cohesive fracture toughness of all the test specimens is calculated by using Gauss–Chebyshev integral method and the weight function method based on the bilinear tensile softening curve given in CEP-FIP Model Code. A comparison of fracture toughness parameters of determined from the experimental approach and analytical approaches is presented in these SCC specimens. Results show that SCC mixed with SWSS replacing FWRS can improve the unstable fracture toughness and fracture energy, and decrease its brittleness behavior. The cohesive fracture toughness of SWSS-SCC specimens is underestimated by these analytical methods based on the tensile softening curve given in CEP-FIP Model Code.

2022 ◽  
Vol 314 ◽  
pp. 125608
Yang Wei ◽  
Pengfei Xu ◽  
Yirui Zhang ◽  
Gaofei Wang ◽  
Kaiqi Zheng

2022 ◽  
Vol 317 ◽  
pp. 125885
Yong Yi ◽  
Deju Zhu ◽  
Guo Shuaicheng ◽  
Sheng Li ◽  
Md Zillur Rahman ◽  

Sign in / Sign up

Export Citation Format

Share Document