Robust Change Vector Analysis (RCVA) for multi-sensor very high resolution optical satellite data

Author(s):  
Frank Thonfeld ◽  
Hannes Feilhauer ◽  
Matthias Braun ◽  
Gunter Menz
Author(s):  
K. Oštir ◽  
K. Čotar ◽  
A. Marsetič ◽  
P. Pehani ◽  
M. Perše ◽  
...  

In response to the increasing need for automatic and fast satellite image processing SPACE-SI has developed and implemented a fully automatic image processing chain STORM that performs all processing steps from sensor-corrected optical images (level 1) to web-delivered map-ready images and products without operator's intervention. <br><br> Initial development was tailored to high resolution RapidEye images, and all crucial and most challenging parts of the planned full processing chain were developed: module for automatic image orthorectification based on a physical sensor model and supported by the algorithm for automatic detection of ground control points (GCPs); atmospheric correction module, topographic corrections module that combines physical approach with Minnaert method and utilizing anisotropic illumination model; and modules for high level products generation. Various parts of the chain were implemented also for WorldView-2, THEOS, Pleiades, SPOT 6, Landsat 5-8, and PROBA-V. Support of full-frame sensor currently in development by SPACE-SI is in plan. <br><br> The proposed paper focuses on the adaptation of the STORM processing chain to very high resolution multispectral images. The development concentrated on the sub-module for automatic detection of GCPs. The initially implemented two-step algorithm that worked only with rasterized vector roads and delivered GCPs with sub-pixel accuracy for the RapidEye images, was improved with the introduction of a third step: super-fine positioning of each GCP based on a reference raster chip. The added step exploits the high spatial resolution of the reference raster to improve the final matching results and to achieve pixel accuracy also on very high resolution optical satellite data.


2016 ◽  
Vol 8 (4) ◽  
pp. 343 ◽  
Author(s):  
Peter Pehani ◽  
Klemen Čotar ◽  
Aleš Marsetič ◽  
Janez Zaletelj ◽  
Krištof Oštir

2021 ◽  
Vol 3 (8) ◽  
Author(s):  
Mashoukur Rahaman ◽  
Md. Esraz-Ul-Zannat

AbstractCyclonic catastrophes frequently devastate coastal regions of Bangladesh that host around 35 million people which represents two-thirds of the total population. They have caused many problems like agricultural crop loss, forest degradation, damage to built-up areas, river and shoreline changes that are linked to people’s livelihood and ecological biodiversity. There is an absence of a comprehensive assessment of the major cyclonic disasters of Bangladesh that integrates geospatial technologies in a single study. This study aims to integrate geospatial technologies with major disasters and compares them, which has not been tried before. This paper tried to identify impacts that occurred in the coastal region by major catastrophic events at a vast level using different geospatial technologies. It focuses to identify the impacts of major catastrophic events on livelihood and food production as well as compare the impacts and intensity of different disasters. Furthermore, it compared the losses among several districts and for that previous and post-satellite images of disasters that occurred in 1988, 1991, 2007, 2009, 2019 were used. Classification technique like machine learning algorithm was done in pre- to post-disaster images. For quantifying change in the indication of different factors, indices including NDVI, NDWI, NDBI were developed. “Change vector analysis” equation was performed in bands of the images of pre- and post-disaster to identify the magnitude of change. Also, crop production variance was analyzed to detect impacts on crop production. Furthermore, the changes in shallow to deep water were analyzed. There is a notable change in shallow to deep water bodies after each disaster in Satkhira and Bhola district but subtle changes in Khulna and Bagerhat districts. Change vector analysis revealed greater intensity in Bhola in 1988 and Satkhira in 1991. Furthermore, over the years 2007 and 2009 it showed medium and deep intense areas all over the region. A sharp decrease in Aus rice production is witnessed in Barishal in 2007 when cyclone “Sidr” was stricken. The declination of potato production is seen in Khulna district after the 1988 cyclone. A huge change in the land-use classes from classified images like water body, Pasture land in 1988 and water body, forest in 1991 is marked out. Besides, a clear variation in the settlement was observed from the classified images. This study explores the necessity of using more geospatial technologies in disastrous impacts assessment around the world in the context of Bangladesh and, also, emphasizes taking effective, proper and sustainable disaster management and mitigation measures to counter future disastrous impacts.


Sign in / Sign up

Export Citation Format

Share Document