scholarly journals High Spatial Resolution Topsoil Organic Matter Content Mapping Across Desertified Land in Northern China

2021 ◽  
Vol 9 ◽  
Author(s):  
Yang Junting ◽  
Li Xiaosong ◽  
Wu Bo ◽  
Wu Junjun ◽  
Sun Bin ◽  
...  

Soil organic matter (SOM) content is an effective indicator of desertification; thus, monitoring its spatial‒temporal changes on a large scale is important for combating desertification. However, mapping SOM content in desertified land is challenging owing to the heterogeneous landscape, relatively low SOM content and vegetation coverage. Here, we modeled the SOM content in topsoil (0–20 cm) of desertified land in northern China by employing a high spatial resolution dataset and machine learning methods, with an emphasis on quarterly green and non-photosynthetic vegetation information, based on the Google Earth Engine (GEE). The results show: 1) the machine learning model performed better than the traditional multiple linear regression model (MLR) for SOM content estimation, and the Random Forest (RF) model was more accurate than the Support Vector Machine (SVM) model; 2) the quarterly information regarding green vegetation and non-photosynthetic were identified as key covariates for estimating the SOM content in desertified land, and an obvious improvement could be observed after simultaneously combining the Dead Fuel Index (DFI) and Normalized Difference Vegetation Index (NDVI) of the four quarters (R2 increased by 0.06, the root mean square error decreased by 0.05, the ratio of prediction deviation increased by 0.2, and the ratio of performance to interquartile distance increased by 0.5). In particular, the effects of the DFI in Q1 (the first quarter) and Q2 (the second quarter) on estimating low SOM content (<1%) were identified; finally, a timely (2019) and high spatial resolution (30 m) SOM content map for the desertified land in northern China was drawn which shows obvious advantages over existing SOM products, thus providing key data support for monitoring and combating desertification.

2021 ◽  
Vol 13 (11) ◽  
pp. 2099
Author(s):  
Felix Greifeneder ◽  
Claudia Notarnicola ◽  
Wolfgang Wagner

Due to its relation to the Earth’s climate and weather and phenomena like drought, flooding, or landslides, knowledge of the soil moisture content is valuable to many scientific and professional users. Remote-sensing offers the unique possibility for continuous measurements of this variable. Especially for agriculture, there is a strong demand for high spatial resolution mapping. However, operationally available soil moisture products exist with medium to coarse spatial resolution only (≥1 km). This study introduces a machine learning (ML)—based approach for the high spatial resolution (50 m) mapping of soil moisture based on the integration of Landsat-8 optical and thermal images, Copernicus Sentinel-1 C-Band SAR images, and modelled data, executable in the Google Earth Engine. The novelty of this approach lies in applying an entirely data-driven ML concept for global estimation of the surface soil moisture content. Globally distributed in situ data from the International Soil Moisture Network acted as an input for model training. Based on the independent validation dataset, the resulting overall estimation accuracy, in terms of Root-Mean-Squared-Error and R², was 0.04 m3·m−3 and 0.81, respectively. Beyond the retrieval model itself, this article introduces a framework for collecting training data and a stand-alone Python package for soil moisture mapping. The Google Earth Engine Python API facilitates the execution of data collection and retrieval which is entirely cloud-based. For soil moisture retrieval, it eliminates the requirement to download or preprocess any input datasets.


2020 ◽  
Author(s):  
Álvaro Moreno Martínez ◽  
Emma Izquierdo Verdiguier ◽  
Gustau Camps Valls ◽  
Marco Maneta ◽  
Jordi Muñoz Marí ◽  
...  

<p>Among Essential Climate Variables (ECVs) for global climate observation, the Leaf Area Index (LAI) and the Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) are the most widely used to study land vegetated surfaces. The NASA’s Moderate  Resolution Imaging Spectro-radiometer (MODIS) is a key instrument aboard the Terra and Aqua platforms and allows to estimate both biophysical variables at coarse resolution (500 m) and global scales. The MODIS operational algorithm to retrieve LAI and FAPAR (MOD15/MYD15/MCD15) uses a physically-based radiative transfer model (RTM) to compute their estimates with corrected surface spectral information content. This algorithm has been heavily validated and compared with field measurements and other sensors but, so far, no equivalent products at high spatial resolution and continental or global scales are routinely produced. </p><p>Here, we introduce and validate a methodology to create a set of high spatial resolution LAI/FAPAR products by learning the MODIS RTM using advanced machine learning approaches and gap filled Landsat surface reflectances. The latter are smoothed and gap-filled by the HIghly Scalable Temporal Adaptive Reflectance Fusion Model (HISTARFM). HISTARTFM has a great potential to improve the original Landsat reflectances by reducing their noise and recovering missing data due to cloud contamination. In addition, HISTARFM runs very fast in cloud computing platforms such as Google Earth Engine (GEE) and provides uncertainty estimates which can be propagated through the models. These estimates allow to compute numerical uncertainties beyond the typical and qualitative control information layers provided in operational products such as the MODIS LAI/FAPAR. The introduced high spatial resolution biophysical products here could be of interest to the users to achieve the needed levels of spatial detail to adequately monitor croplands and heterogeneously vegetated landscapes.</p><p> </p>


2021 ◽  
Vol 13 (15) ◽  
pp. 2934
Author(s):  
Meiwei Zhang ◽  
Meinan Zhang ◽  
Haoxuan Yang ◽  
Yuanliang Jin ◽  
Xinle Zhang ◽  
...  

Many studies have attempted to predict soil organic matter (SOM), whereas mapping high-precision and high-resolution SOM maps remains a challenge due to the difficulty of selecting appropriate satellite data sources and prediction algorithms. This study aimed to investigate the influence of different remotely sensed images and machine learning algorithms on SOM prediction. We constructed two comparative experiments, i.e., full-band and common-band variable datasets of Sentinel-2A and MODIS images using Google Earth Engine (GEE). The predictive performances of random forest (RF), artificial neural network (ANN), and support vector regression (SVR) algorithms were evaluated, and the SOM map was generated for the Songnen Plain. Results showed that the model based on the full-band Sentinel-2A dataset achieved the best performance. The application of Sentinel-2A data resulted in mean relative improvements (RIs) of 7.67% and 5.87%, respectively. The RF achieved a lower root mean squared error (RMSE = 0.68%) and a higher coefficient of determination (R2 = 0.67) in all of the predicted scenarios than ANN and SVR. The resultant SOM map accurately characterized the SOM spatial distribution. Therefore, the Sentinel-2A data have obvious advantages over MODIS due to their higher spectral and spatial resolutions, and the combination of the RF algorithm and GEE is an effective approach to SOM mapping.


Forests ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1290
Author(s):  
Benjamin T. Fraser ◽  
Russell G. Congalton

Remotely sensed imagery has been used to support forest ecology and management for decades. In modern times, the propagation of high-spatial-resolution image analysis techniques and automated workflows have further strengthened this synergy, leading to the inquiry into more complex, local-scale, ecosystem characteristics. To appropriately inform decisions in forestry ecology and management, the most reliable and efficient methods should be adopted. For this reason, our research compares visual interpretation to digital (automated) processing for forest plot composition and individual tree identification. During this investigation, we qualitatively and quantitatively evaluated the process of classifying species groups within complex, mixed-species forests in New England. This analysis included a comparison of three high-resolution remotely sensed imagery sources: Google Earth, National Agriculture Imagery Program (NAIP) imagery, and unmanned aerial system (UAS) imagery. We discovered that, although the level of detail afforded by the UAS imagery spatial resolution (3.02 cm average pixel size) improved the visual interpretation results (7.87–9.59%), the highest thematic accuracy was still only 54.44% for the generalized composition groups. Our qualitative analysis of the uncertainty for visually interpreting different composition classes revealed the persistence of mislabeled hardwood compositions (including an early successional class) and an inability to consistently differentiate between ‘pure’ and ‘mixed’ stands. The results of digitally classifying the same forest compositions produced a higher level of accuracy for both detecting individual trees (93.9%) and labeling them (59.62–70.48%) using machine learning algorithms including classification and regression trees, random forest, and support vector machines. These results indicate that digital, automated, classification produced an increase in overall accuracy of 16.04% over visual interpretation for generalized forest composition classes. Other studies, which incorporate multitemporal, multispectral, or data fusion approaches provide evidence for further widening this gap. Further refinement of the methods for individual tree detection, delineation, and classification should be developed for structurally and compositionally complex forests to supplement the critical deficiency in local-scale forest information around the world.


2019 ◽  
Vol 11 (2) ◽  
pp. 185 ◽  
Author(s):  
Christopher A. Ramezan ◽  
Timothy A. Warner ◽  
Aaron E. Maxwell

High spatial resolution (1–5 m) remotely sensed datasets are increasingly being used to map land covers over large geographic areas using supervised machine learning algorithms. Although many studies have compared machine learning classification methods, sample selection methods for acquiring training and validation data for machine learning, and cross-validation techniques for tuning classifier parameters are rarely investigated, particularly on large, high spatial resolution datasets. This work, therefore, examines four sample selection methods—simple random, proportional stratified random, disproportional stratified random, and deliberative sampling—as well as three cross-validation tuning approaches—k-fold, leave-one-out, and Monte Carlo methods. In addition, the effect on the accuracy of localizing sample selections to a small geographic subset of the entire area, an approach that is sometimes used to reduce costs associated with training data collection, is investigated. These methods are investigated in the context of support vector machines (SVM) classification and geographic object-based image analysis (GEOBIA), using high spatial resolution National Agricultural Imagery Program (NAIP) orthoimagery and LIDAR-derived rasters, covering a 2,609 km2 regional-scale area in northeastern West Virginia, USA. Stratified-statistical-based sampling methods were found to generate the highest classification accuracy. Using a small number of training samples collected from only a subset of the study area provided a similar level of overall accuracy to a sample of equivalent size collected in a dispersed manner across the entire regional-scale dataset. There were minimal differences in accuracy for the different cross-validation tuning methods. The processing time for Monte Carlo and leave-one-out cross-validation were high, especially with large training sets. For this reason, k-fold cross-validation appears to be a good choice. Classifications trained with samples collected deliberately (i.e., not randomly) were less accurate than classifiers trained from statistical-based samples. This may be due to the high positive spatial autocorrelation in the deliberative training set. Thus, if possible, samples for training should be selected randomly; deliberative samples should be avoided.


2019 ◽  
Vol 11 (16) ◽  
pp. 1907 ◽  
Author(s):  
Mohammad Mardani ◽  
Hossein Mardani ◽  
Lorenzo De Simone ◽  
Samuel Varas ◽  
Naoki Kita ◽  
...  

In-time and accurate monitoring of land cover and land use are essential tools for countries to achieve sustainable food production. However, many developing countries are struggling to efficiently monitor land resources due to the lack of financial support and limited access to adequate technology. This study aims at offering a solution to fill in such a gap in developing countries, by developing a land cover solution that is free of costs. A fully automated framework for land cover mapping was developed using 10-m resolution open access satellite images and machine learning (ML) techniques for the African country of Lesotho. Sentinel-2 satellite images were accessed through Google Earth Engine (GEE) for initial processing and feature extraction at a national level. Also, Food and Agriculture Organization’s land cover of Lesotho (FAO LCL) data were used to train a support vector machine (SVM) and bagged trees (BT) classifiers. SVM successfully classified urban and agricultural lands with 62 and 67% accuracy, respectively. Also, BT could classify the two categories with 81 and 65% accuracy, correspondingly. The trained models could provide precise LC maps in minutes or hours. they can also be utilized as a viable solution for developing countries as an alternative to traditional geographic information system (GIS) methods, which are often labor intensive, require acquisition of very high-resolution commercial satellite imagery, time consuming and call for high budgets.


Sign in / Sign up

Export Citation Format

Share Document