scholarly journals Finite-dimensional vertex algebra modules over fixed point commutative subalgebras

2011 ◽  
Vol 337 (1) ◽  
pp. 323-334
Author(s):  
Kenichiro Tanabe
Author(s):  
DMITRI I. PANYUSHEV ◽  
OKSANA S. YAKIMOVA

AbstractLet 𝔮 be a finite-dimensional Lie algebra. The symmetric algebra (𝔮) is equipped with the standard Lie–Poisson bracket. In this paper, we elaborate on a surprising observation that one naturally associates the second compatible Poisson bracket on (𝔮) to any finite order automorphism ϑ of 𝔮. We study related Poisson-commutative subalgebras (𝔮; ϑ) of 𝒮(𝔮) and associated Lie algebra contractions of 𝔮. To obtain substantial results, we have to assume that 𝔮 = 𝔤 is semisimple. Then we can use Vinberg’s theory of ϑ-groups and the machinery of Invariant Theory.If 𝔤 = 𝔥⊕⋯⊕𝔥 (sum of k copies), where 𝔥 is simple, and ϑ is the cyclic permutation, then we prove that the corresponding Poisson-commutative subalgebra (𝔮; ϑ) is polynomial and maximal. Furthermore, we quantise this (𝔤; ϑ) using a Gaudin subalgebra in the enveloping algebra 𝒰(𝔤).


Author(s):  
Klaus Thomsen

SynopsisWe consider automorphic actions on von Neumann algebras of a locally compact group E given as a topological extension 0 → A → E → G → 0, where A is compact abelian and second countable. Motivated by the wish to describe and classify ergodic actions of E when G is finite, we classify (up to conjugacy) first the ergodic actions of locally compact groups on finite-dimensional factors and then compact abelian actions with the property that the fixed-point algebra is of type I with atomic centre. We then handle the case of ergodic actions of E with the property that the action is already ergodic when restricted to A, and then, as a generalisation, the case of (not necessarily ergodic) actions of E with the property that the restriction to A is an action with abelian atomic fixed-point algebra. Both these cases are handled for general locally compact-countable G. Finally, we combine the obtained results to classify the ergodic actions of E when G is finite, provided that either the extension is central and Hom (G, T) = 0, or G is abelian and either cyclic or of an order not divisible by a square.


2017 ◽  
Vol 16 (03) ◽  
pp. 1750053 ◽  
Author(s):  
Slaven Kožić

Let [Formula: see text] be an untwisted affine Kac–Moody Lie algebra. The top of every irreducible highest weight integrable [Formula: see text]-module is the finite-dimensional irreducible [Formula: see text]-module, where the action of the simple Lie algebra [Formula: see text] is given by zeroth products arising from the underlying vertex operator algebra theory. Motivated by this fact, we consider zeroth products of level [Formula: see text] Frenkel–Jing operators corresponding to Drinfeld realization of the quantum affine algebra [Formula: see text]. By applying these products, which originate from the quantum vertex algebra theory developed by Li, on the extension of Koyama vertex operator [Formula: see text], we obtain an infinite-dimensional vector space [Formula: see text]. Next, we introduce an associative algebra [Formula: see text], a certain quantum analogue of the universal enveloping algebra [Formula: see text], and construct some infinite-dimensional [Formula: see text]-modules [Formula: see text] corresponding to the finite-dimensional irreducible [Formula: see text]-modules [Formula: see text]. We show that the space [Formula: see text] carries a structure of an [Formula: see text]-module and, furthermore, we prove that the [Formula: see text]-module [Formula: see text] is isomorphic to the [Formula: see text]-module [Formula: see text].


2006 ◽  
Vol 03 (05n06) ◽  
pp. 881-898 ◽  
Author(s):  
ERNST HEINTZE

In this expository article we discuss some ideas and results which might lead to a theory of infinite dimensional symmetric spaces [Formula: see text] where [Formula: see text] is an affine Kac–Moody group and [Formula: see text] the fixed point group of an involution (of the second kind). We point out several striking similarities of these spaces with their finite dimensional counterparts and discuss their geometry. Furthermore we sketch a classification and show that they are essentially in 1 : 1 correspondence with hyperpolar actions on compact simple Lie groups.


Author(s):  
Krishnan Balachandran ◽  
Jayakumar Kokila

Abstract This paper is concerned with the controllability of linear and nonlinear fractional dynamical systems in finite dimensional spaces. Sufficient conditions for controllability are obtained using Schauder’s fixed point theorem and the controllability Grammian matrix which is defined by the Mittag-Leffler matrix function. Examples are given to illustrate the effectiveness of the theory.


2013 ◽  
Vol 149 (5) ◽  
pp. 840-888 ◽  
Author(s):  
Bojko Bakalov ◽  
Todor Milanov

AbstractSimple, or Kleinian, singularities are classified by Dynkin diagrams of type $ADE$. Let $\mathfrak {g}$ be the corresponding finite-dimensional Lie algebra, and $W$ its Weyl group. The set of $\mathfrak {g}$-invariants in the basic representation of the affine Kac–Moody algebra $\hat {\mathfrak {g}}$ is known as a $\mathcal {W}$-algebra and is a subalgebra of the Heisenberg vertex algebra $\mathcal {F}$. Using period integrals, we construct an analytic continuation of the twisted representation of $\mathcal {F}$. Our construction yields a global object, which may be called a $W$-twisted representation of $\mathcal {F}$. Our main result is that the total descendant potential of the singularity, introduced by Givental, is a highest-weight vector for the $\mathcal {W}$-algebra.


2016 ◽  
Vol 43 (2) ◽  
pp. 145-168 ◽  
Author(s):  
Alexey Bolsinov

The Mishchenko-Fomenko conjecture says that for each real or complex finite-dimensional Lie algebra g there exists a complete set of commuting polynomials on its dual space g*. In terms of the theory of integrable Hamiltonian systems this means that the dual space g* endowed with the standard Lie-Poisson bracket admits polynomial integrable Hamiltonian systems. This conjecture was proved by S. T. Sadetov in 2003. Following his idea, we give an explicit geometric construction for commuting polynomials on g* and consider some examples. (This text is a revised version of my paper published in Russian: A. V. Bolsinov, Complete commutative families of polynomials in Poisson?Lie algebras: A proof of the Mischenko?Fomenko conjecture in book: Tensor and Vector Analysis, Vol. 26, Moscow State University, 2005, 87?109.)


2021 ◽  
Vol 26 (6) ◽  
pp. 1031-1051
Author(s):  
JinRong Wang ◽  
T. Sathiyaraj ◽  
Donal O’Regan

In this paper, we study the relative controllability of a fractional stochastic system with pure delay in finite  dimensional stochastic spaces. A set of sufficient conditions is obtained for relative exact controllability using fixed point theory, fractional calculus (including fractional delayed linear operators and Grammian matrices) and local assumptions on nonlinear terms. Finally, an example is given to illustrate our theory.


Sign in / Sign up

Export Citation Format

Share Document