scholarly journals PERIODIC AUTOMORPHISMS, COMPATIBLE POISSON BRACKETS, AND GAUDIN SUBALGEBRAS

Author(s):  
DMITRI I. PANYUSHEV ◽  
OKSANA S. YAKIMOVA

AbstractLet 𝔮 be a finite-dimensional Lie algebra. The symmetric algebra (𝔮) is equipped with the standard Lie–Poisson bracket. In this paper, we elaborate on a surprising observation that one naturally associates the second compatible Poisson bracket on (𝔮) to any finite order automorphism ϑ of 𝔮. We study related Poisson-commutative subalgebras (𝔮; ϑ) of 𝒮(𝔮) and associated Lie algebra contractions of 𝔮. To obtain substantial results, we have to assume that 𝔮 = 𝔤 is semisimple. Then we can use Vinberg’s theory of ϑ-groups and the machinery of Invariant Theory.If 𝔤 = 𝔥⊕⋯⊕𝔥 (sum of k copies), where 𝔥 is simple, and ϑ is the cyclic permutation, then we prove that the corresponding Poisson-commutative subalgebra (𝔮; ϑ) is polynomial and maximal. Furthermore, we quantise this (𝔤; ϑ) using a Gaudin subalgebra in the enveloping algebra 𝒰(𝔤).

Author(s):  
MÁTYÁS DOMOKOS ◽  
VESSELIN DRENSKY

AbstractThe problem of finding generators of the subalgebra of invariants under the action of a group of automorphisms of a finite-dimensional Lie algebra on its universal enveloping algebra is reduced to finding homogeneous generators of the same group acting on the symmetric tensor algebra of the Lie algebra. This process is applied to prove a constructive Hilbert–Nagata Theorem (including degree bounds) for the algebra of invariants in a Lie nilpotent relatively free associative algebra endowed with an action induced by a representation of a reductive group.


Author(s):  
C. J. Atkin

In a long sequence of notes in the Comptes Rendus and elsewhere, and in the papers [1], [2], [3], [6], [7], Lichnerowicz and his collaborators have studied the ‘classical infinite-dimensional Lie algebras’, their derivations, automorphisms, co-homology, and other properties. The most familiar of these algebras is the Lie algebra of C∞ vector fields on a C∞ manifold. Another is the Lie algebra of ‘Poisson brackets’, that is, of C∞ functions on a C∞ symplectic manifold, with the Poisson bracket as composition; some questions concerning this algebra are of considerable interest in the theory of quantization – see, for instance, [2] and [3].


2017 ◽  
Vol 16 (03) ◽  
pp. 1750053 ◽  
Author(s):  
Slaven Kožić

Let [Formula: see text] be an untwisted affine Kac–Moody Lie algebra. The top of every irreducible highest weight integrable [Formula: see text]-module is the finite-dimensional irreducible [Formula: see text]-module, where the action of the simple Lie algebra [Formula: see text] is given by zeroth products arising from the underlying vertex operator algebra theory. Motivated by this fact, we consider zeroth products of level [Formula: see text] Frenkel–Jing operators corresponding to Drinfeld realization of the quantum affine algebra [Formula: see text]. By applying these products, which originate from the quantum vertex algebra theory developed by Li, on the extension of Koyama vertex operator [Formula: see text], we obtain an infinite-dimensional vector space [Formula: see text]. Next, we introduce an associative algebra [Formula: see text], a certain quantum analogue of the universal enveloping algebra [Formula: see text], and construct some infinite-dimensional [Formula: see text]-modules [Formula: see text] corresponding to the finite-dimensional irreducible [Formula: see text]-modules [Formula: see text]. We show that the space [Formula: see text] carries a structure of an [Formula: see text]-module and, furthermore, we prove that the [Formula: see text]-module [Formula: see text] is isomorphic to the [Formula: see text]-module [Formula: see text].


1998 ◽  
Vol 41 (3) ◽  
pp. 611-623
Author(s):  
R. J. Marsh

Let U be the quantized enveloping algebra associated to a simple Lie algebra g by Drinfel'd and Jimbo. Let λ be a classical fundamental weight for g, and ⋯(λ) the irreducible, finite-dimensional type 1 highest weight U-module with highest weight λ. We show that the canonical basis for ⋯(λ) (see Kashiwara [6, §0] and Lusztig [18, 14.4.12]) and the standard monomial basis (see [11, §§2.4 and 2.5]) for ⋯(λ) coincide.


1985 ◽  
Vol 37 (1) ◽  
pp. 122-140 ◽  
Author(s):  
D. J. Britten ◽  
F. W. Lemire

In this paper, we investigate a conjecture of Dixmier [2] on the structure of basic cycles. Our interest in basic cycles arises primarily from the fact that the irreducible modules of a simple Lie algebra L having a weight space decomposition are completely determined by the irreducible modules of the cycle subalgebra of L. The basic cycles form a generating set for the cycle subalgebra.First some notation: F denotes an algebraically closed field of characteristic 0, L a finite dimensional simple Lie algebra of rank n over F, H a fixed Cartan subalgebra, U(L) the universal enveloping algebra of L, C(L) the centralizer of H in U(L), Φ the set of nonzero roots in H*, the dual space of H, Δ = {α1, …, αn} a base of Φ, and Φ+ = {β1, …, βm} the positive roots corresponding to Δ.


2016 ◽  
Vol 43 (2) ◽  
pp. 145-168 ◽  
Author(s):  
Alexey Bolsinov

The Mishchenko-Fomenko conjecture says that for each real or complex finite-dimensional Lie algebra g there exists a complete set of commuting polynomials on its dual space g*. In terms of the theory of integrable Hamiltonian systems this means that the dual space g* endowed with the standard Lie-Poisson bracket admits polynomial integrable Hamiltonian systems. This conjecture was proved by S. T. Sadetov in 2003. Following his idea, we give an explicit geometric construction for commuting polynomials on g* and consider some examples. (This text is a revised version of my paper published in Russian: A. V. Bolsinov, Complete commutative families of polynomials in Poisson?Lie algebras: A proof of the Mischenko?Fomenko conjecture in book: Tensor and Vector Analysis, Vol. 26, Moscow State University, 2005, 87?109.)


2010 ◽  
Vol 82 (3) ◽  
pp. 401-423
Author(s):  
XIN TANG

AbstractLet 𝒰(𝔯(1)) denote the enveloping algebra of the two-dimensional nonabelian Lie algebra 𝔯(1) over a base field 𝕂. We study the maximal abelian ad-nilpotent (mad) associative subalgebras and finite-dimensional Lie subalgebras of 𝒰(𝔯(1)). We first prove that the set of noncentral elements of 𝒰(𝔯(1)) admits the Dixmier partition, 𝒰(𝔯(1))−𝕂=⋃ 5i=1Δi, and establish characterization theorems for elements in Δi, i=1,3,4. Then we determine the elements in Δi, i=1,3 , and describe the eigenvalues for the inner derivation ad Bx,x∈Δi, i=3,4 . We also derive other useful results for elements in Δi, i=2,3,4,5 . As an application, we find all framed mad subalgebras of 𝒰(𝔯(1)) and determine all finite-dimensional nonabelian Lie algebras that can be realized as Lie subalgebras of 𝒰(𝔯(1)) . We also study the realizations of the Lie algebra 𝔯(1) in 𝒰(𝔯(1)) in detail.


1968 ◽  
Vol 20 ◽  
pp. 344-361 ◽  
Author(s):  
I. Z. Bouwer

Let L be any simple finite-dimensional Lie algebra (defined over the field K of complex numbers). Cartan's theory of weights is used to define sets of (algebraic) representations of L that can be characterized in terms of left ideals of the universal enveloping algebra of L. These representations, called standard, generalize irreducible representations that possess a dominant weight. The newly obtained representations are all infinite-dimensional. Their study is initiated here by obtaining a partial solution to the problem of characterizing them by means of sequences of elements in K.


Sign in / Sign up

Export Citation Format

Share Document