A first-principles calculation on electronic structure and optical performance of chromium and nitrogen codoped anatase titanium dioxide

2014 ◽  
Vol 611 ◽  
pp. 125-129 ◽  
Author(s):  
Fei Wang ◽  
Lei Feng ◽  
Dongmei Zhang ◽  
Qingguo Tang ◽  
Dan Feng
2017 ◽  
Vol 31 (02) ◽  
pp. 1650263
Author(s):  
J. G. Yan ◽  
Z. J. Chen ◽  
G. B. Xu ◽  
Z. Kuang ◽  
T. H. Chen ◽  
...  

Using first-principles calculation we investigated the structural, electronic and elastic properties of paramagnetic CaFeAs2. Our results indicated that the density of states (DOS) was dominated predominantly by Fe-3[Formula: see text] states at Fermi levels, and stronger hybridization exists between As1 and As1 atoms. Three hole pockets are formed at [Formula: see text] and Z points, and two electronic pockets are formed at A and E points. The Dirac cone-like bands appear near B and D points. For the first time we calculated the elastic properties and found that CaFeAs2 is a mechanically stable and moderately hard material, it has elastic anisotropy and brittleness, which agrees well with the bonding picture and the calculation of Debye temperature ([Formula: see text]).


2014 ◽  
Vol 887-888 ◽  
pp. 378-383 ◽  
Author(s):  
Yu Chen ◽  
Zheng Jun Yao ◽  
Ping Ze Zhang ◽  
Dong Bo Wei ◽  
Xi Xi Luo ◽  
...  

The structure stability, mechanical properties and electronic structures of B2 phase FeAl intermetallic compounds and FeAl ternary alloys containing V, Cr or Ni were investigated using first-principles density functional theory calculations. Several models are established. The total energies, cohesive energies, lattice constants, elastic constants, density of states, and the charge densities of Fe8Al8 and Fe8XAl7 ( X=V, Cr, Ni ) are calculated. The stable crystal structures of alloy systems are determined due to the cohesive energy results. The calculated lattice contants of Fe-Al-X ( X= V, Cr, Ni) were found to be related to the atomic radii of the alloy elements. The calculation and analysis of the elastic constants showed that ductility of FeAl alloys was improved by the addition of V, Cr or Ni, the improvement was the highest when Cr was used. The order of the ductility was as follows: Fe8CrAl7 > Fe8NiAl7 > Fe8VAl7 > Fe8Al8. The results of electronic structure analysis showed that FeAl were brittle, mainly due to the orbital hybridization of the s, p and d state electron of Fe and the s and p state electrons of Al, showing typical characteristics of a valence bond. Micro-mechanism for improving ductility of FeAl is that d orbital electron of alloying element is maily involved in hybridization of FeAl, alloying element V, Cr and Ni decrease the directional property in bonding of FeAl.


2011 ◽  
Vol 213 ◽  
pp. 483-486
Author(s):  
Fang Gui ◽  
Shi Yun Zhou ◽  
Wan Jun Yan ◽  
Chun Hong Zhang ◽  
Xiao Tian Guo ◽  
...  

The electronic structure and optical properties of Fe1-xMnxSi2 have been studied using the first principle plane-wave pseudo-potential based on the density function theory. Substitutional doping is considered with Mn concentrations of x=0.0625, 0.125, 0.1875 and 0.25, respectively. The calculated results show that the volume of β-FeSi2 increase and the band gap increase with increasing of Mn.


2018 ◽  
Vol 20 (19) ◽  
pp. 13517-13527 ◽  
Author(s):  
Dongwei Ma ◽  
Jing Zhang ◽  
Yanan Tang ◽  
Zhaoming Fu ◽  
Zongxian Yang ◽  
...  

Using the first-principles calculation, it is found that the electronic structure, magnetic property and chemical activity of the C3N monolayer can be significantly changed by the C and N single vacancies. Thus, we explored the repairing of the C and N single vacancies in the C3N monolayer by the CO or NO molecules.


2007 ◽  
Vol 345-346 ◽  
pp. 959-962
Author(s):  
Yusuke Kinoshita ◽  
Yoshitaka Umeno ◽  
Takayuki Kitamura

Using the first-principles calculation, the elastic constant C44 of Ag/Al multilayers with different modulation periods from 0.43 nm to 2.27 nm has been evaluated in order to examine the effect of atomic and electronic structures on it. With increasing modulation period, C44 decreases and becomes close to that obtained by the conventional mixing rule, however, the difference of 8 % still remains at the modulation period of 2.27 nm. As C44 correlates with the average interplanar spacing, the decrease of C44 can be explained by the decrease of the charge density in the stacking direction due to the increase of the average interplanar spacing. The difference in the electronic structure is included in the effect of atomic structure.


Sign in / Sign up

Export Citation Format

Share Document