Effect of large-size M23C6-type carbides on the low-temperature toughness of martensitic heat-resistant steels

2016 ◽  
Vol 685 ◽  
pp. 248-257 ◽  
Author(s):  
Junru Li ◽  
Chaolei Zhang ◽  
Bo Jiang ◽  
Leyu Zhou ◽  
Yazheng Liu
2006 ◽  
Vol 46 (5) ◽  
pp. 769-775 ◽  
Author(s):  
Kota Sawada ◽  
Hideaki Kushima ◽  
Kazuhiro Kimura

2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Yunqi Wu ◽  
Qian Ge ◽  
Feng Yang ◽  
Tong Wu ◽  
Ming Xiang

Author(s):  
Rainer Prader ◽  
Bruno Buchmayr ◽  
Horst Cerjak ◽  
Alexander Fleming ◽  
Jürgen Peterseim

2001 ◽  
Vol 50 (2) ◽  
pp. 50-56 ◽  
Author(s):  
Yutaka Watanabe ◽  
Yongsun Yi ◽  
Tatsuo Kondo ◽  
Koshi Suzuki ◽  
Kimio Kano

2007 ◽  
Vol 537-538 ◽  
pp. 303-306
Author(s):  
Tamás Bíró ◽  
László Dévényi

This paper shows the result of some metallographical examinations that have been carried out on low-alloyed Cr-Mo-V heat resistant steel. The aim of this research is to present and compare the advantages and disadvantages of the mainly applied metallographical methods. These techniques are optical microscopy, scanning electron microscopy, replica method and special applications of these methods. We have proved that using the investigated methods together gives much more information about the lifetime of the specimen than using these techniques particularly.


2018 ◽  
Vol 709 ◽  
pp. 1-8 ◽  
Author(s):  
C.R. Anoop ◽  
Aditya Prakash ◽  
S.V.S. Narayana Murty ◽  
Indradev Samajdar

Author(s):  
Nuria Sanchez ◽  
Özlem E. Güngör ◽  
Martin Liebeherr ◽  
Nenad Ilić

The unique combination of high strength and low temperature toughness on heavy wall thickness coils allows higher operating pressures in large diameter spiral welded pipes and could represent a 10% reduction in life cycle cost on long distance gas pipe lines. One of the current processing routes for these high thickness grades is the thermo-mechanical controlled processing (TMCP) route, which critically depends on the austenite conditioning during hot forming at specific temperature in relation to the aimed metallurgical mechanisms (recrystallization, strain accumulation, phase transformation). Detailed mechanical and microstructural characterization on selected coils and pipes corresponding to the X80M grade in 24 mm thickness reveals that effective grain size and distribution together with the through thickness gradient are key parameters to control in order to ensure the adequate toughness of the material. Studies on the softening behavior revealed that the grain coarsening in the mid-thickness is related to a decrease of strain accumulation during hot rolling. It was also observed a toughness detrimental effect with the increment of the volume fraction of M/A (martensite/retained austenite) in the middle thickness of the coils, related to the cooling practice. Finally, submerged arc weldability for spiral welded pipe manufacturing was evaluated on coil skelp in 24 mm thickness. The investigations revealed the suitability of the material for spiral welded pipe production, preserving the tensile properties and maintaining acceptable toughness values in the heat-affected zone. The present study revealed that the adequate chemical alloying selection and processing control provide enhanced low temperature toughness on pipes with excellent weldability formed from hot rolled coils X80 grade in 24 mm thickness produced at ArcelorMittal Bremen.


2011 ◽  
Vol 47 (2) ◽  
pp. 224-235
Author(s):  
P. V. Yasnii ◽  
P. O. Marushchak ◽  
A. P. Pylypenko ◽  
R. T. Bishchak ◽  
I. M. Zakiev ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document