Investigation on elastic properties and electronic structure of dilute Ir-based alloys by first-principles calculations

2021 ◽  
Vol 850 ◽  
pp. 156548
Author(s):  
Wei Yu ◽  
Yunxuan Zhou ◽  
Xiaoyu Chong ◽  
Yan Wei ◽  
Changyi Hu ◽  
...  
2009 ◽  
Vol 24 (7) ◽  
pp. 2361-2372 ◽  
Author(s):  
Jiunn Chen ◽  
Yi-Shao Lai ◽  
Ping-Feng Yang ◽  
Chung-Yuan Ren ◽  
Di-Jing Huang

We investigated the elastic properties of two tin-copper crystalline phases, the η′-Cu6Sn5 and ε-Cu3Sn, which are often encountered in microelectronic packaging applications. The full elastic stiffness of both phases is determined based on strain-energy relations using first-principles calculations. The computed results show the elastic anisotropy of both phases that cannot be resolved from experiments. Our results, suggesting both phases have the greatest stiffness along the c direction, particularly showed the unique in-plane elastic anisotropy associated with the lattice modulation of the Cu3Sn superstructure. The polycrystalline moduli obtained using the Voigt-Reuss scheme are 125.98 GPa for Cu6Sn5 and 134.16 GPa for Cu3Sn. Our data analysis indicates that the smaller elastic moduli of Cu6Sn5 are attributed to the direct Sn–Sn bond in Cu6Sn5. We reassert the elastic modulus and hardness of both phases using the nanoindentation experiment for our calculation benchmark. Interestingly, the computed polycrystalline elastic modulus of Cu6Sn5 seems to be overestimated, whereas that of Cu3Sn falls nicely in the range of reported data. Based on the observations, the elastic modulus of Cu6Sn5 obtained from nanoindentation tests admit the microstructure effect that is absent for Cu3Sn is concluded. Our analysis of electronic structure shows that the intrinsic hardness and elastic modulus of both phases are dominated by electronic structure and atomic lattice structure, respectively.


2017 ◽  
Vol 31 (12) ◽  
pp. 1750138 ◽  
Author(s):  
Yuan Hua Lin ◽  
Chuang Chuang Tong ◽  
Yong Pan ◽  
Wan Ying Liu ◽  
Ambrish Singh

In this work, we have applied the first-principles calculations to investigate the structural stability, elastic properties and electronic structure of Mo2FeB2 with alloying elements Cr, Ni and Mn. The calculated cohesive energy shows that Cr, Ni and Mn prefer to occupy the Fe atom of Mo2FeB2. However, only when Mn is doped at the Mo atom of Mo2FeB2, it is converted from dynamic unstable state to stable state. The calculated elastic modulus shows that Mo2FeB2 will have better mechanical properties when alloying elements are at Fe site instead of Mo site. Moreover, Cr addition can improve the volume deformation resistance of Mo2FeB2, Mn addition can improve the shear deformation resistance for Mo2FeB2. The calculated B/G ratio shows that Ni addition can improve the brittleness of borides. Furthermore, the hardness of Mo2FeB2 can be enhanced by adding Cr and Mn element. The calculated electronic structure indicates that the increasing of elastic modulus is attributed to the formation of Cr–B and Mn–B covalent bonds.


1995 ◽  
Vol 408 ◽  
Author(s):  
D. Iotova ◽  
N. Kioussis ◽  
S. P. Lim ◽  
S. Sun ◽  
R. Wu

AbstractThe elastic constants of the L12-type ordered nickel-based intermetallics Ni3X (X = Mn, Al, Ga, Si, Ge), have been calculated by means of ab initio total-energy electronic structurecalculations based on the full-potential linear-muffin-tin-orbital (FLMTO) method. Theorigins in the electronic structure of the variation of the elastic constants, bulk and shearmoduli are investigated across the series, and the effects of the anisotropy of bonding chargedensity on the shear anisotropy factor and the degree of ductility is discussed.


RSC Advances ◽  
2020 ◽  
Vol 10 (29) ◽  
pp. 17317-17326
Author(s):  
Xing Liu ◽  
Jia Fu ◽  
Guangming Chen

Using first-principles calculation, the stable R3c LaWN3 as a new ABX3-type advanced perovskite structure is designed in the plan of the material genome initiative (MGI), which helps to widen the nowadays nitride perovskite material's application.


Sign in / Sign up

Export Citation Format

Share Document