First-Principles Calculations of the Elastic Properties of the Nickel-Based L12 Intermetallics

1995 ◽  
Vol 408 ◽  
Author(s):  
D. Iotova ◽  
N. Kioussis ◽  
S. P. Lim ◽  
S. Sun ◽  
R. Wu

AbstractThe elastic constants of the L12-type ordered nickel-based intermetallics Ni3X (X = Mn, Al, Ga, Si, Ge), have been calculated by means of ab initio total-energy electronic structurecalculations based on the full-potential linear-muffin-tin-orbital (FLMTO) method. Theorigins in the electronic structure of the variation of the elastic constants, bulk and shearmoduli are investigated across the series, and the effects of the anisotropy of bonding chargedensity on the shear anisotropy factor and the degree of ductility is discussed.

1994 ◽  
Vol 357 ◽  
Author(s):  
M. W. Finnis ◽  
C. Kruse ◽  
U. SchÖnberger

AbstractWe discuss the recent first principles calculations of the properties of interfaces between metals and oxides. This type of calculation is parameter-free, and exploits the density functional theory in the local density approximation to obtain the electronic structure of the system. At the same time the equilibrium atomic structure is sought, which minimises the excess energy of the interface. Up to now calculations of this type have been made for a few model interfaces which are atomically coherent, that is with commensurate lattices. Examples are Ag/MgO and Nb/Al2O3. In these cases it has been possible to predict the structures observed by high resolution electron microscopy. The calculations are actually made in a supercell geometry, in which there are alternating nanolayers of metal and ceramic. Because of the effectiveness of metallic screening in particular, the interfaces between the nanolayers do not interfere much with each other.Besides the electronic structure of the interface, such calculations have provided values of the ideal work of adhesion. Electrostatic image forces in conjunction with the elementary ionic model provide a simple framework for understanding the results.An important role of such calculations is to develop intuition about the nature of the bonding, including the effects of charge transfer, which has formerly only been described in an empirical way. It may then be possible to build atomistic models of the metal/ceramic interaction which have a sound physical basis and can be calibrated against ab initio results. Simpler models are necessary if larger systems, including misfit dislocations and other defects, are to be simulated, with a view to understanding the atomic processes of growth and failure. Another area in which ab initio calculations can be expected to contribute is in the chemistry of impurity segregation and its effect at interfaces. Such theoretical tools are a natural partner to the experimental technique of high resolution electron energy loss spectroscopy for studying the local chemical environment at an interface.


2013 ◽  
Vol 664 ◽  
pp. 672-676
Author(s):  
De Ming Han ◽  
Gang Zhang ◽  
Li Hui Zhao

We present first-principles investigations on the elastic properties of XBi (X=Ho, Er) compounds. Basic physical properties, such as lattice constant, elastic constants (Cij), isotropic shear modulus (G), bulk modulus (B), Young’s modulus (Y), Poisson’s ratio (υ), and Anisotropy factor (A) are calculated. The calculated energy band structures show that the two compounds possess semi-metallic character. We hope that these results would be useful for future work on two compounds.


2009 ◽  
Vol 24 (7) ◽  
pp. 2361-2372 ◽  
Author(s):  
Jiunn Chen ◽  
Yi-Shao Lai ◽  
Ping-Feng Yang ◽  
Chung-Yuan Ren ◽  
Di-Jing Huang

We investigated the elastic properties of two tin-copper crystalline phases, the η′-Cu6Sn5 and ε-Cu3Sn, which are often encountered in microelectronic packaging applications. The full elastic stiffness of both phases is determined based on strain-energy relations using first-principles calculations. The computed results show the elastic anisotropy of both phases that cannot be resolved from experiments. Our results, suggesting both phases have the greatest stiffness along the c direction, particularly showed the unique in-plane elastic anisotropy associated with the lattice modulation of the Cu3Sn superstructure. The polycrystalline moduli obtained using the Voigt-Reuss scheme are 125.98 GPa for Cu6Sn5 and 134.16 GPa for Cu3Sn. Our data analysis indicates that the smaller elastic moduli of Cu6Sn5 are attributed to the direct Sn–Sn bond in Cu6Sn5. We reassert the elastic modulus and hardness of both phases using the nanoindentation experiment for our calculation benchmark. Interestingly, the computed polycrystalline elastic modulus of Cu6Sn5 seems to be overestimated, whereas that of Cu3Sn falls nicely in the range of reported data. Based on the observations, the elastic modulus of Cu6Sn5 obtained from nanoindentation tests admit the microstructure effect that is absent for Cu3Sn is concluded. Our analysis of electronic structure shows that the intrinsic hardness and elastic modulus of both phases are dominated by electronic structure and atomic lattice structure, respectively.


2017 ◽  
Vol 31 (12) ◽  
pp. 1750138 ◽  
Author(s):  
Yuan Hua Lin ◽  
Chuang Chuang Tong ◽  
Yong Pan ◽  
Wan Ying Liu ◽  
Ambrish Singh

In this work, we have applied the first-principles calculations to investigate the structural stability, elastic properties and electronic structure of Mo2FeB2 with alloying elements Cr, Ni and Mn. The calculated cohesive energy shows that Cr, Ni and Mn prefer to occupy the Fe atom of Mo2FeB2. However, only when Mn is doped at the Mo atom of Mo2FeB2, it is converted from dynamic unstable state to stable state. The calculated elastic modulus shows that Mo2FeB2 will have better mechanical properties when alloying elements are at Fe site instead of Mo site. Moreover, Cr addition can improve the volume deformation resistance of Mo2FeB2, Mn addition can improve the shear deformation resistance for Mo2FeB2. The calculated B/G ratio shows that Ni addition can improve the brittleness of borides. Furthermore, the hardness of Mo2FeB2 can be enhanced by adding Cr and Mn element. The calculated electronic structure indicates that the increasing of elastic modulus is attributed to the formation of Cr–B and Mn–B covalent bonds.


2011 ◽  
Vol 406 (19) ◽  
pp. 3681-3686 ◽  
Author(s):  
Yifang Ouyang ◽  
Fenglian Liu ◽  
Hongmei Chen ◽  
Xiaoma Tao ◽  
Yong Du ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document