Nano tube-in-tube CNT@void@TiO2@C with excellent ultrahigh rate capability and long cycling stability for lithium ion storage

2021 ◽  
Vol 851 ◽  
pp. 156795
Author(s):  
Y.F. Yuan ◽  
Q. Chen ◽  
M. Zhu ◽  
G.S. Cai ◽  
S.Y. Guo
2016 ◽  
Vol 4 (2) ◽  
pp. 362-367 ◽  
Author(s):  
Bin Luo ◽  
Tengfei Qiu ◽  
Long Hao ◽  
Bin Wang ◽  
Meihua Jin ◽  
...  

3D graphene-templated tin-based foams with tunable pore structures and uniform carbon coating have been successfully developed, achieving superior cycling stability and rate capability for lithium ion storage.


2019 ◽  
Vol 7 (38) ◽  
pp. 21766-21773 ◽  
Author(s):  
Shixue Zhang ◽  
Huan Liu ◽  
Bin Cao ◽  
Qizhen Zhu ◽  
Peng Zhang ◽  
...  

A Ti3C2Tx/CNTs@P nanohybrid with stable Ti–O–P bonds is simply fabricated, which exhibits high capacity, excellent long-term cycling stability and superior rate capability as an anode for lithium ion batteries.


2020 ◽  
Vol 3 (12) ◽  
pp. 12037-12045
Author(s):  
Yang Li ◽  
Yan Wang ◽  
Guirong Cui ◽  
Tianyu Zhu ◽  
Jianfang Zhang ◽  
...  

RSC Advances ◽  
2015 ◽  
Vol 5 (77) ◽  
pp. 63012-63016 ◽  
Author(s):  
Yourong Wang ◽  
Wei Zhou ◽  
Liping Zhang ◽  
Guangsen Song ◽  
Siqing Cheng

A SiO2@NiO core–shell electrode exhibits almost 100% coulombic efficiency, excellent cycling stability and rate capability after the first few cycles.


RSC Advances ◽  
2015 ◽  
Vol 5 (53) ◽  
pp. 42922-42930 ◽  
Author(s):  
Diganta Saikia ◽  
Tzu-Hua Wang ◽  
Chieh-Ju Chou ◽  
Jason Fang ◽  
Li-Duan Tsai ◽  
...  

Ordered mesoporous carbons CMK-3 and CMK-8 with different mesostructures are evaluated as anode materials for lithium-ion batteries. CMK-8 possesses higher reversible capacity, better cycling stability and rate capability than CMK-3.


2015 ◽  
Vol 3 (7) ◽  
pp. 3962-3967 ◽  
Author(s):  
Xiaolei Wang ◽  
Ge Li ◽  
Fathy M. Hassan ◽  
Matthew Li ◽  
Kun Feng ◽  
...  

High-performance robust CNT–graphene–Si composites are designed as anode materials with enhanced rate capability and excellent cycling stability for lithium-ion batteries. Such an improvement is mainly attributed to the robust sponge-like architecture, which holds great promise in future practical applications.


Sign in / Sign up

Export Citation Format

Share Document