Carbon-Coated Self-Assembled Ultrathin T-Nb2O5 Nanosheets for High-Rate Lithium-Ion Storage with Superior Cycling Stability

2020 ◽  
Vol 3 (12) ◽  
pp. 12037-12045
Author(s):  
Yang Li ◽  
Yan Wang ◽  
Guirong Cui ◽  
Tianyu Zhu ◽  
Jianfang Zhang ◽  
...  
2015 ◽  
Vol 186 ◽  
pp. 572-578 ◽  
Author(s):  
Yue-Ya Wang ◽  
Tao Li ◽  
Yong-Xin Qi ◽  
Rui-Lin Bai ◽  
Long-Wei Yin ◽  
...  

2016 ◽  
Vol 4 (2) ◽  
pp. 362-367 ◽  
Author(s):  
Bin Luo ◽  
Tengfei Qiu ◽  
Long Hao ◽  
Bin Wang ◽  
Meihua Jin ◽  
...  

3D graphene-templated tin-based foams with tunable pore structures and uniform carbon coating have been successfully developed, achieving superior cycling stability and rate capability for lithium ion storage.


2021 ◽  
Vol 590 ◽  
pp. 580-590
Author(s):  
Qingke Tan ◽  
Shouchun Bao ◽  
Xiangli Kong ◽  
Xiang Zheng ◽  
Zhengguan Xu ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1672
Author(s):  
Shih-Chieh Hsu ◽  
Tzu-Ten Huang ◽  
Yen-Ju Wu ◽  
Cheng-Zhang Lu ◽  
Huei Chu Weng ◽  
...  

Carbon-coated Li4Ti5O12 (LTO) has been prepared using polyimide (PI) as a carbon source via the thermal imidization of polyamic acid (PAA) followed by a carbonization process. In this study, the PI with different structures based on pyromellitic dianhydride (PMDA), 4,4′-oxydianiline (ODA), and p-phenylenediamine (p-PDA) moieties have been synthesized. The effect of the PI structure on the electrochemical performance of the carbon-coated LTO has been investigated. The results indicate that the molecular arrangement of PI can be improved when the rigid p-PDA units are introduced into the PI backbone. The carbons derived from the p-PDA-based PI show a more regular graphite structure with fewer defects and higher conductivity. As a result, the carbon-coated LTO exhibits a better rate performance with a discharge capacity of 137.5 mAh/g at 20 C, which is almost 1.5 times larger than that of bare LTO (94.4 mAh/g).


2021 ◽  
Vol 10 (1) ◽  
pp. 20-33
Author(s):  
Lian Wu ◽  
Yongqiang Dai ◽  
Wei Zeng ◽  
Jintao Huang ◽  
Bing Liao ◽  
...  

Abstract Fast charge transfer and lithium-ion transport in the electrodes are necessary for high performance Li–S batteries. Herein, a N-doped carbon-coated intercalated-bentonite (Bent@C) with interlamellar ion path and 3D conductive network architecture is designed to improve the performance of Li–S batteries by expediting ion/electron transport in the cathode. The interlamellar ion pathways are constructed through inorganic/organic intercalation of bentonite. The 3D conductive networks consist of N-doped carbon, both in the interlayer and on the surface of the modified bentonite. Benefiting from the unique structure of the Bent@C, the S/Bent@C cathode exhibits a high initial capacity of 1,361 mA h g−1 at 0.2C and achieves a high reversible capacity of 618.1 m Ah g−1 at 2C after 500 cycles with a sulfur loading of 2 mg cm−2. Moreover, with a higher sulfur loading of 3.0 mg cm−2, the cathode still delivers a reversible capacity of 560.2 mA h g−1 at 0.1C after 100 cycles.


Nano Energy ◽  
2018 ◽  
Vol 54 ◽  
pp. 304-312 ◽  
Author(s):  
Zhujun Yao ◽  
Xinhui Xia ◽  
Yan Zhang ◽  
Dong Xie ◽  
Changzhi Ai ◽  
...  

2019 ◽  
Vol 833 ◽  
pp. 380-386 ◽  
Author(s):  
Zi Wen ◽  
Zhi Zhu ◽  
Bo Jin ◽  
Huan Li ◽  
Weimin Yao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document