Abstract
Conventional 2D-graphene sheets (2D-rGO) often demonstrate poor performance as capacitor materials, especially in cyclability due to the lamellar stacking and agglomeration of the electrode materials. Herein, we have proposed that crushed 3D-graphene (c-3D-rGO) can overcome the limitation. A simplistic way to prepare 3D-crushed graphene structures has been presented utilizing metal rGO core-shell (Ni@rGO) followed by acid leaching. The electrochemical performances of the prepared c-3D-rGO were evaluated as capacitor material using a three-electrode system with aqueous 0.5 M Na2SO4 solution through cyclic voltammetry and galvanostatic charge-discharge measurements. 2D-rGO was separately prepared to compare the performance with 3D-crushed graphene structures. It has been observed that the calculated specific capacitance (Csp) value of the prepared c-3D-rGO was 335 Fg-1 at a current density of 0.15 Ag-1, which was about three times higher than that of the 2D-rGO. The c-3D-rGO electrode retained 100% capacitance of its initial value after 10000 cycles, demonstrating the material’s excellent electrochemical stability. Furthermore, to show the performance in hybrid capacitor, manganese oxide (MnOx) with c-3D-rGO. The presence of c-3D-rGO significantly improved the capacitive performance MnOx.