Atomic layer deposition of Al2O3 and HfO2 for high power laser application

2020 ◽  
pp. 157751
Author(s):  
Hao Liu ◽  
Ping Ma ◽  
Yunti Pu ◽  
Zuzhen Zhao
2021 ◽  
Vol 2 (1) ◽  
pp. 100297
Author(s):  
Samuel M. Dull ◽  
Shicheng Xu ◽  
Timothy Goh ◽  
Dong Un Lee ◽  
Drew Higgins ◽  
...  

2014 ◽  
Vol 2 (36) ◽  
pp. 15044-15051 ◽  
Author(s):  
Erik Østreng ◽  
Knut Bjarne Gandrud ◽  
Yang Hu ◽  
Ola Nilsen ◽  
Helmer Fjellvåg

Atomic layer deposition (ALD) has been used to prepare nano-structured cathode films for Li-ion batteries of V2O5 from VO(thd)2 and ozone at 215 °C.


2018 ◽  
Vol 7 (1-2) ◽  
pp. 23-31 ◽  
Author(s):  
Hao Liu ◽  
Lars Jensen ◽  
Ping Ma ◽  
Detlev Ristau

AbstractAtomic layer deposition (ALD) facilitates the deposition of coatings with precise thickness, high surface conformity, structural uniformity, and nodular-free structure, which are properties desired in high-power laser coatings. ALD was studied to produce uniform and stable Al2O3and HfO2single layers and was employed to produce anti-reflection coatings for the harmonics (1ω, 2ω, 3ω, and 4ω) of the Nd:YAG laser. In order to qualify the ALD films for high-power laser applications, the band gap energy, absorption, and element content of single layers were characterized. The damage tests of anti-reflection coatings were carried out with a laser system operated at 1ω, 2ω, 3ω, and 4ω, respectively. The damage mechanism was discussed by analyzing the damage morphology and electric field intensity difference. ALD coatings exhibit stable growth rates, low absorption, and rather high laser-induced damage threshold (LIDT). The LIDT is limited by HfO2as the employed high-index material. These properties indicate the high versatility of ALD films for applications in high-power coatings.


2012 ◽  
Author(s):  
Sameeh I. Batarseh ◽  
Hazim H. Abass ◽  
Abdulrahman A. Al-Mulhem ◽  
Nabeel S. Habib

2017 ◽  
Vol 478 ◽  
pp. 28-32 ◽  
Author(s):  
Yanru Yin ◽  
Hanlin Tian ◽  
Jian Zhang ◽  
Wenxiang Mu ◽  
Baitao Zhang ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3282
Author(s):  
Guibai Xie ◽  
Hongwu Bai ◽  
Guanghui Miao ◽  
Guobao Feng ◽  
Jing Yang ◽  
...  

With the development of industrial civilization, advanced manufacturing technology has attracted widespread concern, including in the aerospace industry. In this paper, we report the applications of ultra-thin atomic layer deposition nanofilm in the advanced aerospace manufacturing industry, including aluminum anti-oxidation and secondary electron suppression, which are critical in high-power and miniaturization development. The compact and uniform aluminum oxide film, which is formed by thermal atomic layer deposition (ALD), can prevent the deep surface oxidation of aluminum during storage, avoiding the waste of material and energy in repetitive production. The total secondary electron yield of the C/TiN component nanofilm, deposited through plasma-enhanced atomic layer deposition, decreases 25% compared with an uncoated surface. The suppression of secondary electron emission is of great importance in solving the multipactor for high-power microwave components in space. Moreover, the controllable, ultra-thin uniform composite nanofilm can be deposited directly on the complex surface of devices without any transfer process, which is critical for many different applications. The ALD nanofilm shows potential for promoting system performance and resource consumption in the advanced aerospace manufacturing industry.


2017 ◽  
Vol 63 ◽  
pp. 213-220 ◽  
Author(s):  
Lili Hu ◽  
Dongbing He ◽  
Huiyu Chen ◽  
Xin Wang ◽  
Tao Meng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document