Simultaneously enhanced mechanical properties and electromagnetic interference shielding performance of a graphene nanosheets (GNSs) reinforced magnesium matrix composite by GNSs induced laminated structure

2021 ◽  
pp. 162847
Author(s):  
Zhenming Sun ◽  
Hailong Shi ◽  
Xiaoshi Hu ◽  
Mufu Yan ◽  
Xiaojun Wang
2014 ◽  
Vol 61 (5) ◽  
pp. 319-327 ◽  
Author(s):  
Mohamed Gobara ◽  
Mohamed Shamekh

Purpose – This paper aims to study both the mechanical properties and the corrosion behavior of the synthesized in situ (TiC-TiB2) particulates/AZ91 magnesium matrix composite and compare the results with that of the conventional AZ91D alloy. Design/methodology/approach – Scanning electron microscope (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) were used to study the surface morphology and crystalline structure. Mechanical compression tests were used to investigate the mechanical performance according to ASTM E9-89a. The corrosion behavior of the synthesized magnesium alloy was examined using both electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization techniques in dilute Harrison solutions. Findings – The microstructure of the Mg composite showed a uniform distribution of reinforcing phases. Also, the reinforcing phases were formed without residual intermediate phases. The addition of titanium and boron carbides not only enhanced the mechanical properties of the matrix but also improve its corrosion behavior. Originality/value – This is the first time that magnesium matrix composite has been to synthesized with TiC and TiB2 particulates starting from starting from Ti and B carbides powder without adding aluminium using practical and low-cost technique (in situ reactive infiltration technique). This paper studies the corrosion behavior of synthesized Mg matrix in dilute Harrison solution and compares the results with that of conventional AZ91D.


2013 ◽  
Vol 312 ◽  
pp. 315-318 ◽  
Author(s):  
C.F. Fang ◽  
L.G. Meng ◽  
N.N. Wu ◽  
X.G. Zhang

In-situ micro/nanosized TiB2 and Al2(Y, Gd) particles reinforced magnesium matrix composite was successfully fabricated by addition of Al-Ti-B preform into Mg-Gd-Y-Zn matrix alloy, its microstructures and properties were investigated. The results show that the introduction of Al-Ti-B preform causes the precipitation of Al2(Y, Gd) particles and the SHS synthesis of TiB2 particles which significantly refine solidification structure. The reinforced Al2(Y, Gd) particles with average sizes of 5-8 μm are uniformly distributed throughout the magnesium matrix, and have a good bond to the matrix. Tensile tests indicate that, compared with the former matrix alloy, mechanical properties of the multiple in-situ particles reinforced composite are improved all-roundly.


Sign in / Sign up

Export Citation Format

Share Document