Amorphous MoS electro-synthesized in alkaline electrolyte for superior hydrogen evolution

2021 ◽  
pp. 163509
Author(s):  
Chunxia Niu ◽  
Hua Song ◽  
Yunzhen Chang ◽  
Wenjing Hou ◽  
Yanping Li ◽  
...  
2017 ◽  
Vol 5 (39) ◽  
pp. 20932-20937 ◽  
Author(s):  
Zhe Lv ◽  
Muhammad Tahir ◽  
Xuewei Lang ◽  
Gang Yuan ◽  
Lun Pan ◽  
...  

A strategy is designed to fabricate well-dispersed Mo2N nanoparticles on nitrogen-doped carbon as a new and effective electrocatalyst for hydrogen evolution in alkaline electrolyte.


2021 ◽  
Author(s):  
Meng Wang ◽  
Zepeng Lv ◽  
Xuewei Lv ◽  
Qian Li ◽  
Jie Dang

Abstract Density functional theory (DFT) calculation indicators (ΔG, densities of state, D-band and bader charge) are commonly used to predict and analyze the hydrogen evolution reaction (HER) activity of catalysts, and most studies discuss only one or few of these indicators’ impact on catalysis, but still no report has comprehensively evaluated the influence of all these indicators on catalytic performance. Herein, foreseen by comprehensive consideration first, we report transition metal doped Ni3N nanosheets combined on Ni foam for utra-efficient alkaline hydrogen evolution. For dual transition metals doped Ni3N, Co,V-Ni3N exhibits remarkable HER performance with a significantly low overpotential of only 10 mV in alkaline electrolyte and 41 mV in alkaline seawater electrolyte at 10 mA cm− 2; while for single transition metal doped Ni3N, V-Ni3N exhibits the best performance with an overpotential of 15 mV and a Tafel slope of 37 mV dec− 1. Our work highlights the importance of comprehensive evaluation of DFT calculation indexes, and opens up a new method for the rational design of efficient and low-cost catalysts.


1970 ◽  
Vol 43 (1) ◽  
pp. 103-116 ◽  
Author(s):  
M Ashraful Islam Molla ◽  
Mithun Sarker ◽  
AKM Fazle Kibria

Redox behaviors and hydrogen evolution efficiencies of Pd and Mo deposited Pd electrodes have been investigated in 30wt.% KOH electrolyte by cyclic voltammetry. Cyclic voltammograms of Pd electrode in between the potential range - 1.05 V to + 0.75 V showed two couples of redox peaks for the transformations of Pd(0) ←→ Pd(OH)2 and Pd(OH)2 ←→ PdOOH, an anodic peak for the desorption of diffusional hydrogen (dH) and hydrogen and oxygen evolutions at the terminal potential regions. Hydrogen evolution efficiency found decreased with time and then reached to a stable condition after 35 minutes. In presence of deposited Mo, the electrode stable condition appeared after 10 minutes only. Pd found predominates over deposited Mo. Both the Pd(0) ←Pd(OH)2 and Mo(0) ← Mo(OH)2 transformations appeared at the same potential value. Mo stopped the movement of hydrogen adsorption and absorption region of Pd electrode towards negative potential direction. It increased the hydrogen evolution efficiency of Pd electrode remarkably. At the potentials - 1.1 V, - 1.2 V, - 1.25 V and - 1.3 V, currents for Pd + Mo system found 1.44, 1.25, 1.20, 1.23 times higher than those of Pd electrode. Mo also showed hydrogen migratory role to the fraction of Pd surface covered by it. Hydrogen evolution reactions (HER) over Pd and Pd + Mo surfaces seemed followed similar mechanisms. Tafel plots for the HER for both the systems showed two Tafel regions. Exchange current density values (io) for the low and high overpotential regions of Pd + Mo system showed 2.85 times and 1.29 times higher values than those of Pd electrode. Key words: Pd, Pd-Mo, Hydrogen evolution efficiency, Hydrogen evolution reactions (HER) DOI: 10.3329.bjsir.v43i1.861 Bangladesh J. Sci. Ind. Res. 43(1), 103-116, 2008


Sign in / Sign up

Export Citation Format

Share Document