P1-396: CYSTEINE PROTEASE INHIBITOR, E64D, OF CATHEPSIN B REDUCES PGLU-ABETA AND ABETA, AND IMPROVES MEMORY DEFICITS IN THE APPLON MOUSE MODEL OF AD

2014 ◽  
Vol 10 ◽  
pp. P459-P459
Author(s):  
Greg Hook ◽  
Jin Yu ◽  
Mark Stephen Kindy ◽  
Vivian Hook
Toxins ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 272
Author(s):  
Masahiro Nagahama ◽  
Keiko Kobayashi ◽  
Sadayuki Ochi ◽  
Masaya Takehara

Clostridium botulinum C2 toxin is a clostridial binary toxin consisting of actin ADP-ribosyltransferase (C2I) and C2II binding components. Activated C2II (C2IIa) binds to cellular receptors and forms oligomer in membrane rafts. C2IIa oligomer assembles with C2I and contributes to the transport of C2I into the cytoplasm of host cells. C2IIa induces Ca2+-induced lysosomal exocytosis, extracellular release of the acid sphingomyelinase (ASMase), and membrane invagination and endocytosis through generating ceramides in the membrane by ASMase. Here, we reveal that C2 toxin requires the lysosomal enzyme cathepsin B (CTSB) during endocytosis. Lysosomes are a rich source of proteases, containing cysteine protease CTSB and cathepsin L (CTSL), and aspartyl protease cathepsin D (CTSD). Cysteine protease inhibitor E64 blocked C2 toxin-induced cell rounding, but aspartyl protease inhibitor pepstatin-A did not. E64 inhibited the C2IIa-promoted extracellular ASMase activity, indicating that the protease contributes to the activation of ASMase. C2IIa induced the extracellular release of CTSB and CTSL, but not CTSD. CTSB knockdown by siRNA suppressed C2 toxin-caused cytotoxicity, but not siCTSL. These findings demonstrate that CTSB is important for effective cellular entry of C2 toxin into cells through increasing ASMase activity.


Pathogens ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 388
Author(s):  
Hương Giang Lê ◽  
A-Jeong Ham ◽  
Jung-Mi Kang ◽  
Tuấn Cường Võ ◽  
Haung Naw ◽  
...  

Naegleria fowleri is a free-living amoeba that is ubiquitous in diverse natural environments. It causes a fatal brain infection in humans known as primary amoebic meningoencephalitis. Despite the medical importance of the parasitic disease, there is a great lack of knowledge about the biology and pathogenicity of N. fowleri. In this study, we identified and characterized a novel cysteine protease inhibitor of N. fowleri (NfCPI). NfCPI is a typical cysteine protease inhibitor belonging to the cystatin family with a Gln-Val-Val-Ala-Gly (QVVAG) motif, a characteristic motif conserved in the cystatin family of proteins. Bacterially expressed recombinant NfCPI has a dimeric structure and exhibits inhibitory activity against several cysteine proteases including cathespin Bs of N. fowleri at a broad range of pH values. Expression profiles of nfcpi revealed that the gene was highly expressed during encystation and cyst of the amoeba. Western blot and immunofluorescence assays also support its high level of expression in cysts. These findings collectively suggest that NfCPI may play a critical role in encystation or cyst formation of N. fowleri by regulating cysteine proteases that may mediate encystation or mature cyst formation of the amoeba. More comprehensive studies to investigate the roles of NfCPI in encystation and its target proteases are necessary to elucidate the regulatory mechanism and the biological significance of NfCPI.


2005 ◽  
Vol 96 (1) ◽  
pp. 137-144 ◽  
Author(s):  
A.M. Zagariya ◽  
R. Bhat ◽  
E. Zhabotynsky ◽  
G. Chari ◽  
S. Navale ◽  
...  

2017 ◽  
Vol 26 (4) ◽  
pp. 563-569 ◽  
Author(s):  
Bartłomiej Stańczykiewicz ◽  
Marta Jakubik-Witkowska ◽  
Antoni Polanowski ◽  
Tadeusz Trziszka ◽  
Joanna Rymaszewska

Sign in / Sign up

Export Citation Format

Share Document