scholarly journals Brain Pyroglutamate Amyloid-β is Produced by Cathepsin B and is Reduced by the Cysteine Protease Inhibitor E64d, Representing a Potential Alzheimer's Disease Therapeutic

2014 ◽  
Vol 41 (1) ◽  
pp. 129-149 ◽  
Author(s):  
Gregory Hook ◽  
Jin Yu ◽  
Thomas Toneff ◽  
Mark Kindy ◽  
Vivian Hook
2015 ◽  
Vol 30 ◽  
pp. 343
Author(s):  
B. Stanczykiewicz ◽  
M. Jakubik-Witkowska ◽  
A. Polanowski ◽  
T. Trziszka ◽  
J. Rymaszewska

Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1946
Author(s):  
Nitin Chitranshi ◽  
Ashutosh Kumar ◽  
Samran Sheriff ◽  
Veer Gupta ◽  
Angela Godinez ◽  
...  

Amyloid precursor protein (APP), upon proteolytic degradation, forms aggregates of amyloid β (Aβ) and plaques in the brain, which are pathological hallmarks of Alzheimer’s disease (AD). Cathepsin B is a cysteine protease enzyme that catalyzes the proteolytic degradation of APP in the brain. Thus, cathepsin B inhibition is a crucial therapeutic aspect for the discovery of new anti-Alzheimer’s drugs. In this study, we have employed mixed-feature ligand-based virtual screening (LBVS) by integrating pharmacophore mapping, docking, and molecular dynamics to detect small, potent molecules that act as cathepsin B inhibitors. The LBVS model was generated by using hydrophobic (HY), hydrogen bond acceptor (HBA), and hydrogen bond donor (HBD) features, using a dataset of 24 known cathepsin B inhibitors of both natural and synthetic origins. A validated eight-feature pharmacophore hypothesis (Hypo III) was utilized to screen the Maybridge chemical database. The docking score, MM-PBSA, and MM-GBSA methodology was applied to prioritize the lead compounds as virtual screening hits. These compounds share a common amide scaffold, and showed important interactions with Gln23, Cys29, His110, His111, Glu122, His199, and Trp221. The identified inhibitors were further evaluated for cathepsin-B-inhibitory activity. Our study suggests that pyridine, acetamide, and benzohydrazide compounds could be used as a starting point for the development of novel therapeutics.


2005 ◽  
Vol 386 (9) ◽  
Author(s):  
Vivian Hook ◽  
Thomas Toneff ◽  
Matthew Bogyo ◽  
Doron Greenbaum ◽  
Katalin F. Medzihradszky ◽  
...  

AbstractThe regulated secretory pathway of neurons is the major source of extracellular Aβ that accumulates in Alzheimer's disease (AD). Extracellular Aβ secreted from that pathway is generated by β-secretase processing of amyloid precursor protein (APP). Previously, cysteine protease activity was demonstrated as the major β-secretase activity in regulated secretory vesicles of neuronal chromaffin cells. In this study, the representative cysteine protease activity in these secretory vesicles was purified and identified as cathepsin B by peptide sequencing. Immunoelectron microscopy demonstrated colocalization of cathepsin B with Aβ in these vesicles. The selective cathepsin B inhibitor, CA074, blocked the conversion of endogenous APP to Aβ in isolated regulated secretory vesicles. In chromaffin cells, CA074Me (a cell permeable form of CA074) reduced by about 50% the extracellular Aβ released by the regulated secretory pathway, but CA074Me had no effect on Aβ released by the constitutive pathway. Furthermore, CA074Me inhibited processing of APP into the COOH-terminal β-secretase-like cleavage product. These results provide evidence for cathepsin B as a candidate β-secretase in regulated secretory vesicles of neuronal chromaffin cells. These findings implicate cathepsin B as β-secretase in the regulated secretory pathway of brain neurons, suggesting that inhibitors of cathepsin B may be considered as therapeutic agents to reduce Aβ in AD.


Toxins ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 272
Author(s):  
Masahiro Nagahama ◽  
Keiko Kobayashi ◽  
Sadayuki Ochi ◽  
Masaya Takehara

Clostridium botulinum C2 toxin is a clostridial binary toxin consisting of actin ADP-ribosyltransferase (C2I) and C2II binding components. Activated C2II (C2IIa) binds to cellular receptors and forms oligomer in membrane rafts. C2IIa oligomer assembles with C2I and contributes to the transport of C2I into the cytoplasm of host cells. C2IIa induces Ca2+-induced lysosomal exocytosis, extracellular release of the acid sphingomyelinase (ASMase), and membrane invagination and endocytosis through generating ceramides in the membrane by ASMase. Here, we reveal that C2 toxin requires the lysosomal enzyme cathepsin B (CTSB) during endocytosis. Lysosomes are a rich source of proteases, containing cysteine protease CTSB and cathepsin L (CTSL), and aspartyl protease cathepsin D (CTSD). Cysteine protease inhibitor E64 blocked C2 toxin-induced cell rounding, but aspartyl protease inhibitor pepstatin-A did not. E64 inhibited the C2IIa-promoted extracellular ASMase activity, indicating that the protease contributes to the activation of ASMase. C2IIa induced the extracellular release of CTSB and CTSL, but not CTSD. CTSB knockdown by siRNA suppressed C2 toxin-caused cytotoxicity, but not siCTSL. These findings demonstrate that CTSB is important for effective cellular entry of C2 toxin into cells through increasing ASMase activity.


Nutrients ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 117 ◽  
Author(s):  
Jin Yu ◽  
Hong Zhu ◽  
Saeid Taheri ◽  
William Mondy ◽  
Stephen Perry ◽  
...  

Alzheimer’s disease (AD) is the result of the deposition of amyloid β (Aβ) peptide into amyloid fibrils and tau into neurofibrillary tangles. At the present time, there are no possible treatments for the disease. We have recently shown that diets enriched in phytonutrients show protection or limit the extent of damage in a number of neurological disorders. GrandFusion (GF) diets have attenuated the outcomes in animal models of traumatic brain injury, cerebral ischemia, and chronic traumatic encephalopathy. In this study, we investigated the effect of GF diets in a mouse model of AD prior to the development of amyloid plaques to show how this treatment paradigm would alter the accumulation of Aβ peptide and related pathologic changes (i.e., inflammation, cathepsin B, and memory impairment). Administration of GF diets (2–4%) over a period of four months in APP/ΔPS1 double-transgenic mice resulted in attenuation in Aβ peptide levels, reduction of amyloid load, and inflammation, increased cathepsin B expression, and improved spatial orientation. Additionally, treatment with GF diets increased nerve growth factor (NGF) levels in the brain and tempered the memory impairment in the animal model. These data suggest that GF diets may alter the development and progression of the mechanisms associated with the disease process to effectively modify AD pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document