scholarly journals P2-021: METFORMIN AND TOPIRAMATE IMPROVE LEARNING AND MEMORY IN DIABETIC MICE AND SAMP8 MICE MODEL OF ALZHEIMER'S DISEASE

2014 ◽  
Vol 10 ◽  
pp. P477-P478 ◽  
Author(s):  
John Edward Morley ◽  
Michael L. Niehoff ◽  
Michael W. Bergin ◽  
Elizabeth C. Roesler ◽  
Gul N. Shah ◽  
...  
2009 ◽  
Vol 30 (8) ◽  
pp. 1192-1204 ◽  
Author(s):  
Oliver Ambrée ◽  
Helene Richter ◽  
Norbert Sachser ◽  
Lars Lewejohann ◽  
Ekrem Dere ◽  
...  

2015 ◽  
Vol 23 (11) ◽  
pp. 1712-1721 ◽  
Author(s):  
Tomomi Kiyota ◽  
Gang Zhang ◽  
Christine M Morrison ◽  
Megan E Bosch ◽  
Robert A Weir ◽  
...  

2017 ◽  
Vol 13 (7) ◽  
pp. P949
Author(s):  
Susan A. Farr ◽  
Elizabeth Louise van der Kam ◽  
Jordan W. Brown ◽  
Michael L. Niehoff ◽  
John E. Morley

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Jing Jiang ◽  
Gang Liu ◽  
Suhua Shi ◽  
Zhigang Li

Objectives. To compare musical electroacupuncture and electroacupuncture in a mouse model of Alzheimer’s disease.Methods. In this study, 7.5-month-old male senescence-accelerated mouse prone 8 (SAMP8) mice were used as an Alzheimer’s disease animal model. In the normal control paradigm, 7.5-month-old male SAMR1 mice were used as the blank control group (N group). After 15 days of treatment, using Morris water maze test, micro-PET, and immunohistochemistry, the differences among the musical electroacupuncture (MEA), electroacupuncture (EA), Alzheimer’s disease (AD), and normal (N) groups were assessed.Results. The Morris water maze test, micro-PET, and immunohistochemistry revealed that MEA and EA therapies could improve spatial learning and memory ability, glucose metabolism level in the brain, and Aβamyloid content in the frontal lobe, compared with the AD group (P<0.05). Moreover, MEA therapy performed better than EA treatment in decreasing amyloid-beta levels in the frontal lobe of mice with AD.Conclusion. MEA therapy may be superior to EA in treating Alzheimer’s disease as demonstrated in SAMP8 mice.


2021 ◽  
pp. 1-20
Author(s):  
Daniel Cuervo-Zanatta ◽  
Jaime Garcia-Mena ◽  
Claudia Perez-Cruz

Background: Normal aging is accompanied by cognitive deficiencies, affecting women and men equally. Aging is the main risk factor for Alzheimer’s disease (AD), with women having a higher risk. The higher prevalence of AD in women is associated with the abrupt hormonal decline seen after menopause. However, other factors may be involved in this sex-related cognitive decline. Alterations in gut microbiota (GM) and its bioproducts have been reported in AD subjects and transgenic (Tg) mice, having a direct impact on brain amyloid-β pathology in male (M), but not in female (F) mice. Objective: The aim of this work was to determine GM composition and cognitive dysfunction in M and F wildtype (WT) and Tg mice, in a sex/genotype segregation design. Methods: Anxiety, short term working-memory, spatial learning, and long-term spatial memory were evaluated in 6-month-old WT and Tg male mice. Fecal short chain fatty acids were determined by chromatography, and DNA sequencing and bioinformatic analyses were used to determine GM differences. Results: We observed sex-dependent differences in cognitive skills in WT mice, favoring F mice. However, the cognitive advantage of females was lost in Tg mice. GM composition showed few sex-related differences in WT mice. Contrary, Tg-M mice presented a more severe dysbiosis than Tg-F mice. A decreased abundance of Ruminococcaceae was associated with cognitive deficits in Tg-F mice, while butyrate levels were positively associated with better working- and object recognition-memory in WT-F mice. Conclusion: This report describes a sex-dependent association between GM alterations and cognitive impairment in a mice model of AD.


2021 ◽  
Author(s):  
Swati Som ◽  
Justin Antony ◽  
Palanisamy Dhanabal ◽  
Ponnusankar Sivasankaran

Abstract Diosgenin is a neurosteroid derived from the plants and has been previously reported for its numerous health beneficial properties, such as anti-arrhythmic, hypolipidemic, and antiproliferative effects. Although several studies conducted earlier suggested cognition enhancement actions of diosgenin against neurodegenerative disorders, but the molecular mechanisms underlying are not clearly understood. In the present study, we investigated the neuroprotective effect of diosgenin in the wistar rats that received an intracerebroventricular injection of Amyloid-β (1–42) peptides, representing a rodent model of Alzheimer’s disease (AD). Animals were treated with 100 and 200 mg/kg/p.o of diosgenin for 28 days, followed by Amyloid-β (1–42) peptides infusion. Animals were assessed for the spatial learning and memory by using radial arm maze and passive avoidance task. Subsequently, animals were euthanized and brains were collected for biochemical estimations and histopathological studies. Our results revealed that, diosgenin administration dose dependently improved the spatial learning and memory and protected the animals from Amyloid-β (1–42) peptides induced disrupted cognitive functions. Further, biochemical analysis showed that diosgenin successfully attenuated Amyloid-β (1–42) mediated plaque load, oxidative stress, neuroinflammation and elevated acetylcholinesterase activity. In addition, histopathological evaluation also supported neuroprotective effects of diosgenin in hippocampus of rat brain when assessed using hematoxylin-eosin and Cresyl Violet staining. Thus, the aforementioned effects suggested protective action of diosgenin against Aβ (1–42) induced neuronal damage and thereby can serve as a potential therapeutic candidate for AD.


Sign in / Sign up

Export Citation Format

Share Document