scholarly journals IC-P-085: CHARACTERIZATION OF LENTICULOSTRIATE ARTERIES USING ARTERIAL SPIN LABELING AND HIGH-RESOLUTION 3D BLACK-BLOOD MRI AS AN IMAGING MARKER IN VASCULAR COGNITIVE IMPAIRMENT AND DEMENTIA

2019 ◽  
Vol 15 ◽  
pp. P75-P76
Author(s):  
Samantha J. Ma ◽  
Kay Jann ◽  
Giuseppe Barisano ◽  
Xingfeng Shao ◽  
Lirong Yan ◽  
...  
NeuroImage ◽  
2019 ◽  
Vol 199 ◽  
pp. 184-193 ◽  
Author(s):  
Samantha J. Ma ◽  
Mona Sharifi Sarabi ◽  
Lirong Yan ◽  
Xingfeng Shao ◽  
Yue Chen ◽  
...  

2021 ◽  
pp. svn-2020-000636
Author(s):  
Miaoqi Zhang ◽  
Fei Peng ◽  
Xin Tong ◽  
Xin Feng ◽  
Yunduo Li ◽  
...  

Background and purposePrevious studies have reported about inflammation processes (IPs) that play important roles in aneurysm formation and rupture, which could be driven by blood flow. IPs can be identified using aneurysmal wall enhancement (AWE) on high-resolution black-blood MRI (BB-MRI) and blood flow haemodynamics can be demonstrated by four-dimensional-flow MRI (4D-flow MRI). Thus, this study investigated the associations between AWE and haemodynamics in unruptured intracranial aneurysms (IA) by combining 4D-flow MRI and high-resolution BB-MRI.Materials and methodsBetween April 2014 and October 2017, 48 patients with 49 unruptured IA who underwent both 4D-flow MRI and high-resolution BB-MRI were retrospectively included in this study. The haemodynamic parameters demonstrated using 4D-flow MRI were compared between different AWE patterns using the Kruskal-Wallis test and ordinal regression.ResultsThe results of Kruskal-Wallis test showed that the average wall shear stress in the IA (WSSavg-IA), maximum through-plane velocity in the adjacent parent artery, inflow jet patterns and the average vorticity in IA (vorticityavg-IA) were significantly associated with the AWE patterns. Ordinal regression analysis identified WSSavg-IA (p=0.002) and vorticityavg-IA (p=0.033) as independent predictors of AWE patterns.ConclusionA low WSS and low average vorticity were independently associated with a high AWE grade for IAs larger than 4 mm. Therefore, WSS and average vorticity could predict AWE and circumferential AWE.


2005 ◽  
Vol 12 (12) ◽  
pp. 1521-1526 ◽  
Author(s):  
SeshaSailaja Anumula ◽  
Hee Kwon Song ◽  
Alexander C. Wright ◽  
Felix W. Wehrli

2016 ◽  
Vol 58 (6) ◽  
pp. 569-576 ◽  
Author(s):  
Florian Schwarz ◽  
Frederik F. Strobl ◽  
Clemens C. Cyran ◽  
Andreas D. Helck ◽  
Martin Hartmann ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Fengfang Li ◽  
Liyan Lu ◽  
Song’an Shang ◽  
Huiyou Chen ◽  
Peng Wang ◽  
...  

Objective. The influence of cognitive impairment after mild traumatic brain injury (mTBI) on cerebral vascular perfusion has been widely concerned, yet the resting-state cerebral blood flow (CBF) connectivity alterations based on arterial spin labeling (ASL) in mild traumatic brain injury (mTBI) remain unclear. This study investigated region CBF and CBF connectivity features in acute mTBI patients, as well as the associations between CBF changes and cognitive impairment. Materials and Methods. Forty-five acute mTBI patients and 42 health controls underwent pseudocontinuous arterial spin labeling (pCASL) perfusion magnetic resonance imaging (MRI). The alterations in regional CBF and relationship between the CBF changes and cognitive impairment were detected. The ASL-CBF connectivity of the brain regions with regional CBF significant differences was also compared between two groups. Neuropsychological tests covered seven cognitive domains. Associations between the CBF changes and cognitive impairment were further investigated. Results. Compared with the healthy controls, the acute mTBI patients exhibited increased CBF in the bilateral inferior temporal gyrus (ITG) and decreased CBF in the right middle frontal gyrus (MFG), the bilateral superior frontal gyrus (SFG), and the right cerebellum posterior lobe (CPL). In the mTBI patients, significant correlations were identified between the CBF changes and cognitive impairment. Importantly, the acute mTBI patients exhibited CBF disconnections between the right CPL and right fusiform gyrus (FG) as well as bilateral ITG, between the left SFG and left middle occipital gyrus (MOG), and between the right SFG and right FG as well as right parahippocampal gyrus. Conclusion. Our results suggest that acute mTBI patients exhibit both regional CBF abnormalities and CBF connectivity deficits, which may underlie the cognitive impairment of the acute mTBI patients.


Sign in / Sign up

Export Citation Format

Share Document