Interpretation of self-potential anomalies by Enhanced Local Wave number technique

2009 ◽  
Vol 68 (2) ◽  
pp. 259-268 ◽  
Author(s):  
Shalivahan Srivastava ◽  
B.N.P. Agarwal
2021 ◽  
Vol 104 (2) ◽  
Author(s):  
Nairita Pal ◽  
Ismael Boureima ◽  
Noah Braun ◽  
Susan Kurien ◽  
Praveen Ramaprabhu ◽  
...  

2017 ◽  
Author(s):  
Lena Schoon ◽  
Christoph Zülicke

Abstract. Commonly, wave quantities are maintained in zonal mean averages. Hence, local wave phenomena remain unclear. Here, we introduce a diagnostic tool for studies of wave packets locally. The "Unified Wave Diagnosis" (UWaDi) uses the Hilbert Transform to obtain a complex signal from a real-valued function and estimates the amplitude and wave number locally. Operational data from the European Centre for Medium-Range Weather Forecasts is used to perform the analysis. Restrictions on gravity wave propagation due to model sponge layers are identified well above the 10 hPa altitude. From a minor stratospheric warming in January 2016 three cases for vertical gravity wave propagation in different background wind conditions are selected. It is shown that zonal mean wind quantities cannot reveal local "valves" allowing gravity waves to propagate into the mid-stratosphere. The unexpected finding of high gravity wave activity at the minor warming of 30 January 2016 is related to strong planetary wave activity and a strong local "pump". Accordingly, the advantages of a local wave packet analysis are demonstrated for profiles up to the model sponge layer.


1994 ◽  
Vol 116 (4) ◽  
pp. 214-220 ◽  
Author(s):  
R. C. Ertekin ◽  
Y. Z. Liu ◽  
B. Padmanabhan

A linear ray theory is developed to study the interaction of water waves with a steady intake-pipe flow in deep water. The wave-current interaction model is based on the assumption that the current field is slowly varying in comparison with the wave field. With the use of the dispersion relation, an equation is derived for the wave number that also depends on the current velocity field. Imposing the condition of irrotationality of wave number, a nonlinear set of characteristic equations of oblique waves is obtained and solved numerically to determine the rays. The current field is generated by solving the 3-D potential problem of specified intake normal-velocity at the entrance of a horizontal, circular pipe of semi-infinite length, situated on the still-water level, by using the axisymmetric Rankine source method. It appears that the velocity-potential solution of the intake-pipe flow problem presented here does not exist in the literature. Finally, the local wave amplitudes are calculated through the conservation of wave-action equation to predict the focusing of wave energy.


2011 ◽  
Vol 133 (2) ◽  
Author(s):  
Shiyu Wang ◽  
Jinyou Xu ◽  
Jie Xiu ◽  
Jianping Liu ◽  
Ce Zhang ◽  
...  

This work investigates the influence of the pole/slot combination on the elastic wave deformation of permanent magnetic motors. To this aim, the local wave superposition and distributed wave interaction methods are used during investigation. The methods borrow ideas from other fields such as the planetary gears, the turbines, and so on because of the inherent mechanical and magnetic symmetry of the motor. More precisely, the symmetry naturally presents some interesting and useful results without specifying the magnetic pulls/waves or even their magnitudes. The analysis results explicitly show that the elastic wave deformations only depend on whether particular algebraic relations are satisfied by the combination of pole number, slot number, magnetic pull order, and wave number. The predicted relationship and the wave suppression effectiveness are verified by the finite element method and a comparison with an existing literature. The relationship naturally provides simple guidelines for the elastic wave deformation suppression only by using the proper pole/slot combination.


2020 ◽  
Vol 640 ◽  
pp. A53
Author(s):  
L. Löhnert ◽  
S. Krätschmer ◽  
A. G. Peeters

Here, we address the turbulent dynamics of the gravitational instability in accretion disks, retaining both radiative cooling and irradiation. Due to radiative cooling, the disk is unstable for all values of the Toomre parameter, and an accurate estimate of the maximum growth rate is derived analytically. A detailed study of the turbulent spectra shows a rapid decay with an azimuthal wave number stronger than ky−3, whereas the spectrum is more broad in the radial direction and shows a scaling in the range kx−3 to kx−2. The radial component of the radial velocity profile consists of a superposition of shocks of different heights, and is similar to that found in Burgers’ turbulence. Assuming saturation occurs through nonlinear wave steepening leading to shock formation, we developed a mixing-length model in which the typical length scale is related to the average radial distance between shocks. Furthermore, since the numerical simulations show that linear drive is necessary in order to sustain turbulence, we used the growth rate of the most unstable mode to estimate the typical timescale. The mixing-length model that was obtained agrees well with numerical simulations. The model gives an analytic expression for the turbulent viscosity as a function of the Toomre parameter and cooling time. It predicts that relevant values of α = 10−3 can be obtained in disks that have a Toomre parameter as high as Q ≈ 10.


2016 ◽  
Vol 136 (5) ◽  
pp. 291-296
Author(s):  
Hideo Sakai ◽  
Tsuyoshi Kobayashi ◽  
Yoshinori Izumi ◽  
Takeshi Nakayama ◽  
Katsumi Hattori

Author(s):  
Key Fonseca de Lima ◽  
Nilson Barbieri ◽  
Fernando Jun Hattori Terashima ◽  
Vinicius Antonio Grossl ◽  
Nelson Legat Filho

Sign in / Sign up

Export Citation Format

Share Document