scholarly journals FPAA-based implementation of fractional-order chaotic oscillators using first-order active filter blocks

2020 ◽  
Vol 25 ◽  
pp. 77-85 ◽  
Author(s):  
Alejandro Silva-Juárez ◽  
Esteban Tlelo-Cuautle ◽  
Luis Gerardo de la Fraga ◽  
Rui Li
1992 ◽  
Vol 57 (7) ◽  
pp. 1451-1458 ◽  
Author(s):  
Refat M. Hassan

The kinetics of oxidation of arsenic(III) by hexachloroiridate(IV) at lower acid concentrations and at constant ionic strength of 1.0 mol dm-3 have been investigated spectrophotometrically. A first-order reaction in [IrCl62-] and fractional order with respect to arsenic(III) have been observed. A kinetic evidence for the formation of an intermediate complex between the hydrolyzed arsenic(III) species and the oxidant was presented. The results showed that decreasing the [H+] is accompanied by an appreciable acceleration of the rate of oxidation. The activation parameters have been evaluated and a mechanism consistent with the kinetic results was suggested.


2022 ◽  
pp. 341-374
Author(s):  
Alejandro Silva-Juarez ◽  
Esteban Tlelo-Cuautle ◽  
Luis Gerardo de la Fraga

2014 ◽  
Vol 573 ◽  
pp. 279-284 ◽  
Author(s):  
Neenu Elizabeth Cherian ◽  
K. Sundaravadivu

This paper presents an analytical design method for fractional order proportional integral (FOPI) controller for the spherical tank which is modelled as a first order plus dead time (FOPDT) process. The design is based on the Bode’s ideal transfer function and fractional calculus. By using frequency domain, the proposed FOPI tuning rules are directly derived for a generalized first order plus dead time process and then applied to the transfer functions obtained at various operating points of the spherical tank. The performance of the designed FOPI controller is compared with the conventional integer order proportional integral derivative (IOPID) controller in simulation.


2019 ◽  
Vol 28 (14) ◽  
pp. 1950239 ◽  
Author(s):  
Akif Akgul

Many literatures have discussed fractional order memristor and memcapacitor-based chaotic oscillators but the entire oscillator model is considered to be of fractional order. My interest is to propose a nonlinear oscillator with considering only the memcapacitor element of fractional order. Hence, I propose a fractional order memcapacitor (FMC)-based novel chaotic oscillator. The complete mathematical model for the proposed oscillator is derived and presented in this paper. The dimensionless state equations are then analyzed by using the equilibrium points and their stability, Eigen values, Kaplan–Yorke dimensions and Lyapunov exponents. To understand the complete dynamical behavior, bifurcation graphs are obtained and presented. Finally, the proposed fractional memcapacitor oscillator is implemented by using the shelf components.


Sign in / Sign up

Export Citation Format

Share Document