Interplanetary magnetic field By control of prompt total electron content increases during superstorms

2014 ◽  
Vol 115-116 ◽  
pp. 7-16 ◽  
Author(s):  
A.J. Mannucci ◽  
G. Crowley ◽  
B.T. Tsurutani ◽  
O.P. Verkhoglyadova ◽  
A. Komjathy ◽  
...  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Arun Kumar Singh ◽  
Sampad Kumar Panda

Abstract In this paper, we investigate the hemispheric symmetric and asymmetric characteristics of ionospheric total electron content (TEC) and its dependency on the interplanetary magnetic field (IMF) in the northern and southern polar ionosphere. The changes in amplitude and phase scintillation are also probed through Global Ionospheric Scintillation and TEC monitoring (GISTM) systems recordings at North pole [Himadri station; Geographic 78°55′ N, 11°56′ E] and South pole [Maitri station; Geographic 70°46′ S 11°44′ E]. Observations show the range of %TEC variability being relatively more over Antarctic region (−40 % to 60 %) than Arctic region (−25 % to 25 %), corroborating the role of the dominant solar photoionization production process. Our analysis confirms that TEC variation at polar latitudes is a function of magnetosphere-ionosphere coupling, depending on interplanetary magnetic field (IMF) orientation and magnitude in the X ( B x Bx ), Y ( B y By ), and Z ( B z Bz ) plane. Visible enhancement in TEC is noticed in the northern polar latitude when B x < 0 Bx<0 , B y < − 6 nT By<-6\hspace{0.1667em}\text{nT} or B y > 6 nT By>6\hspace{0.1667em}\text{nT} and B z > 0 Bz>0 whereas the southern polar latitude perceives TEC enhancements with B x > 0 Bx>0 , − 6 nT < B y < 6 nT -6\hspace{0.1667em}\text{nT}<By<6\hspace{0.1667em}\text{nT} and B z < 0 Bz<0 . Further investigation reveals the intensity of phase scintillation being more pronounced than the amplitude scintillation during the disturbed geomagnetic conditions with excellent correlation with the temporal variation of TEC at both the stations. Corresponding variations in the parameters are studied in terms of particle precipitation, auroral oval expansion, Joule’s heating phenomena, and other ionospheric parameters. The studies are in line with efforts for improving ionospheric delay error and scintillation modeling and satellite-based positioning accuracies in polar latitudes.


2021 ◽  
Vol 44 ◽  
pp. 130-132
Author(s):  
A.V. Timchenko ◽  
◽  
F.S. Bessarab ◽  
A.V. Radievsky ◽  
◽  
...  

The paper presents the results of studies of the seasonal variability of statistical relationships between Magnetoconjugated Points (MCP) of the ionosphere. The analysis is based on the calculation of the correlation coefficients between the variations in the Total Electron Content (TEC) at points located on the same field line of the dipole magnetic field on both sides of the geomagnetic equator. Global TEC maps were used as initial data. For the four seasons of 2009 and 2015, the values of the Pearson’s correlation coefficient between the variations in the Total Electron Content in the MCP were calculated. For two levels of solar activity, we examined the seasonal features of statistical relationships between TEC variations at points located on the same field line of the dipole magnetic field on both sides of the geomagnetic equator. Pearson's correlation coefficient was calculated for the mean daily TEC variations. It was shown in the work that during the period of low solar activity, the correlation between the TEC variations in the MCP regions is weak or absent, except for autumn. In 2015, a significant correlation between magnetoconjugated regions is observed during all seasons, while in winter and summer they are localized at low latitudes and in spring and autumn at high and middle latitudes.


Author(s):  
O.S. Bolaji ◽  
J.O. Adeniyi ◽  
I.A. Adimula ◽  
S.M. Radicella ◽  
P.H. Doherty

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Arun Kumar Singh ◽  
Sampad Kumar Panda

Abstract In this paper, we investigate the hemispheric symmetric and asymmetric characteristics of ionospheric total electron content (TEC) and its dependency on the interplanetary magnetic field (IMF) in the northern and southern polar ionosphere. The changes in amplitude and phase scintillation are also probed through Global Ionospheric Scintillation and TEC monitoring (GISTM) systems recordings at North pole [Himadri station; Geographic 78°55′ N, 11°56′ E] and South pole [Maitri station; Geographic 70°46′ S 11°44′ E]. Observations show the range of %TEC variability being relatively more over Antarctic region (−40 % to 60 %) than Arctic region (−25 % to 25 %), corroborating the role of the dominant solar photoionization production process. Our analysis confirms that TEC variation at polar latitudes is a function of magnetosphere-ionosphere coupling, depending on interplanetary magnetic field (IMF) orientation and magnitude in the X ( B x Bx ), Y ( B y By ), and Z ( B z Bz ) plane. Visible enhancement in TEC is noticed in the northern polar latitude when B x < 0 Bx<0 , B y < − 6 nT By<-6\hspace{0.1667em}\text{nT} or B y > 6 nT By>6\hspace{0.1667em}\text{nT} and B z > 0 Bz>0 whereas the southern polar latitude perceives TEC enhancements with B x > 0 Bx>0 , − 6 nT < B y < 6 nT -6\hspace{0.1667em}\text{nT}<By<6\hspace{0.1667em}\text{nT} and B z < 0 Bz<0 . Further investigation reveals the intensity of phase scintillation being more pronounced than the amplitude scintillation during the disturbed geomagnetic conditions with excellent correlation with the temporal variation of TEC at both the stations. Corresponding variations in the parameters are studied in terms of particle precipitation, auroral oval expansion, Joule’s heating phenomena, and other ionospheric parameters. The studies are in line with efforts for improving ionospheric delay error and scintillation modeling and satellite-based positioning accuracies in polar latitudes.


Sign in / Sign up

Export Citation Format

Share Document