Comparison of polar ionospheric behavior at Arctic and Antarctic regions for improved satellite-based positioning

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Arun Kumar Singh ◽  
Sampad Kumar Panda

Abstract In this paper, we investigate the hemispheric symmetric and asymmetric characteristics of ionospheric total electron content (TEC) and its dependency on the interplanetary magnetic field (IMF) in the northern and southern polar ionosphere. The changes in amplitude and phase scintillation are also probed through Global Ionospheric Scintillation and TEC monitoring (GISTM) systems recordings at North pole [Himadri station; Geographic 78°55′ N, 11°56′ E] and South pole [Maitri station; Geographic 70°46′ S 11°44′ E]. Observations show the range of %TEC variability being relatively more over Antarctic region (−40 % to 60 %) than Arctic region (−25 % to 25 %), corroborating the role of the dominant solar photoionization production process. Our analysis confirms that TEC variation at polar latitudes is a function of magnetosphere-ionosphere coupling, depending on interplanetary magnetic field (IMF) orientation and magnitude in the X ( B x Bx ), Y ( B y By ), and Z ( B z Bz ) plane. Visible enhancement in TEC is noticed in the northern polar latitude when B x < 0 Bx<0 , B y < − 6 nT By<-6\hspace{0.1667em}\text{nT} or B y > 6 nT By>6\hspace{0.1667em}\text{nT} and B z > 0 Bz>0 whereas the southern polar latitude perceives TEC enhancements with B x > 0 Bx>0 , − 6 nT < B y < 6 nT -6\hspace{0.1667em}\text{nT}<By<6\hspace{0.1667em}\text{nT} and B z < 0 Bz<0 . Further investigation reveals the intensity of phase scintillation being more pronounced than the amplitude scintillation during the disturbed geomagnetic conditions with excellent correlation with the temporal variation of TEC at both the stations. Corresponding variations in the parameters are studied in terms of particle precipitation, auroral oval expansion, Joule’s heating phenomena, and other ionospheric parameters. The studies are in line with efforts for improving ionospheric delay error and scintillation modeling and satellite-based positioning accuracies in polar latitudes.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Arun Kumar Singh ◽  
Sampad Kumar Panda

Abstract In this paper, we investigate the hemispheric symmetric and asymmetric characteristics of ionospheric total electron content (TEC) and its dependency on the interplanetary magnetic field (IMF) in the northern and southern polar ionosphere. The changes in amplitude and phase scintillation are also probed through Global Ionospheric Scintillation and TEC monitoring (GISTM) systems recordings at North pole [Himadri station; Geographic 78°55′ N, 11°56′ E] and South pole [Maitri station; Geographic 70°46′ S 11°44′ E]. Observations show the range of %TEC variability being relatively more over Antarctic region (−40 % to 60 %) than Arctic region (−25 % to 25 %), corroborating the role of the dominant solar photoionization production process. Our analysis confirms that TEC variation at polar latitudes is a function of magnetosphere-ionosphere coupling, depending on interplanetary magnetic field (IMF) orientation and magnitude in the X ( B x Bx ), Y ( B y By ), and Z ( B z Bz ) plane. Visible enhancement in TEC is noticed in the northern polar latitude when B x < 0 Bx<0 , B y < − 6 nT By<-6\hspace{0.1667em}\text{nT} or B y > 6 nT By>6\hspace{0.1667em}\text{nT} and B z > 0 Bz>0 whereas the southern polar latitude perceives TEC enhancements with B x > 0 Bx>0 , − 6 nT < B y < 6 nT -6\hspace{0.1667em}\text{nT}<By<6\hspace{0.1667em}\text{nT} and B z < 0 Bz<0 . Further investigation reveals the intensity of phase scintillation being more pronounced than the amplitude scintillation during the disturbed geomagnetic conditions with excellent correlation with the temporal variation of TEC at both the stations. Corresponding variations in the parameters are studied in terms of particle precipitation, auroral oval expansion, Joule’s heating phenomena, and other ionospheric parameters. The studies are in line with efforts for improving ionospheric delay error and scintillation modeling and satellite-based positioning accuracies in polar latitudes.


2014 ◽  
Vol 115-116 ◽  
pp. 7-16 ◽  
Author(s):  
A.J. Mannucci ◽  
G. Crowley ◽  
B.T. Tsurutani ◽  
O.P. Verkhoglyadova ◽  
A. Komjathy ◽  
...  

Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 215
Author(s):  
Na Cheng ◽  
Shuli Song ◽  
Wei Li

The ionosphere is a significant component of the geospace environment. Storm-induced ionospheric anomalies severely affect the performance of Global Navigation Satellite System (GNSS) Positioning, Navigation, and Timing (PNT) and human space activities, e.g., the Earth observation, deep space exploration, and space weather monitoring and prediction. In this study, we present and discuss the multi-scale ionospheric anomalies monitoring over China using the GNSS observations from the Crustal Movement Observation Network of China (CMONOC) during the 2015 St. Patrick’s Day storm. Total Electron Content (TEC), Ionospheric Electron Density (IED), and the ionospheric disturbance index are used to monitor the storm-induced ionospheric anomalies. This study finally reveals the occurrence of the large-scale ionospheric storms and small-scale ionospheric scintillation during the storm. The results show that this magnetic storm was accompanied by a positive phase and a negative phase ionospheric storm. At the beginning of the main phase of the magnetic storm, both TEC and IED were significantly enhanced. There was long-duration depletion in the topside ionospheric TEC during the recovery phase of the storm. This study also reveals the response and variations in regional ionosphere scintillation. The Rate of the TEC Index (ROTI) was exploited to investigate the ionospheric scintillation and compared with the temporal dynamics of vertical TEC. The analysis of the ROTI proved these storm-induced TEC depletions, which suppressed the occurrence of the ionospheric scintillation. To improve the spatial resolution for ionospheric anomalies monitoring, the regional Three-Dimensional (3D) ionospheric model is reconstructed by the Computerized Ionospheric Tomography (CIT) technique. The spatial-temporal dynamics of ionospheric anomalies during the severe geomagnetic storm was reflected in detail. The IED varied with latitude and altitude dramatically; the maximum IED decreased, and the area where IEDs were maximum moved southward.


2005 ◽  
Vol 58 (2) ◽  
pp. 241-256 ◽  
Author(s):  
Marcio Aquino ◽  
Terry Moore ◽  
Alan Dodson ◽  
Sam Waugh ◽  
Jock Souter ◽  
...  

Extensive ionospheric scintillation and Total Electron Content (TEC) data were collected by the Institute of Engineering Surveying and Space Geodesy (IESSG) in Northern Europe during years of great impact of the solar maximum on GNSS users (2001–2003). The ionospheric TEC is responsible for range errors due to its time delay effect on transionospheric signals. Electron density irregularities in the ionosphere, occurring frequently during these years, are responsible for (phase and amplitude) fluctuations on GNSS signals, known as ionospheric scintillation. Since June 2001 four GPS Ionospheric Scintillation and TEC Monitor receivers (the NovAtel/AJ Systems GSV4004) have been deployed at stations in the UK and Norway, forming a Northern European network, covering geographic latitudes from 53° to 70° N approximately. These receivers compute and record GPS phase and amplitude scintillation parameters, as well as TEC and TEC variations. The project involved setting up the network and developing automated archiving and data analysis strategies, aiming to study the impact of scintillation on DGPS and EGNOS users, and on different GPS receiver technologies. In order to characterise scintillation and TEC variations over Northern Europe, as well as investigate correlation with geomagnetic activity, long-term statistical analyses were also produced. This paper summarises our findings, providing an overview of the potential implications of ionospheric scintillation for the GNSS user in Northern Europe.


2018 ◽  
Vol 14 (2) ◽  
pp. 111
Author(s):  
Sri Ekawati

The solar flare is potential to cause sudden increase of the electron density in the ionosphere,particularly in D layer, known as Sudden Ionospheric Disturbances (SID). This increase of electron density occurs not only in the ionospheric D layer but also in the ionospheric E and F layers. Total Electron Content (TEC) measured by GPS is the total number of electrons from D to F layer. The aim of this research is to study the effect of solar flare x-rays, greater than M5 class in 2015, on ionospheric TEC over Bandung and Manado. This paper presents the preliminary result of ionospheric TEC response on solar flare occurrence over Indonesia. The ionospheric TEC data is derived from GPS Ionospheric Scintillation and TEC Monitor (GISTM) receiver at Bandung (-6.90o S;107.6o E geomagnetic latitude 16.54o S) and Manado (1.48o N; 124.85o E geomagnetic latitude 7.7o S). The solar x-rays flares classes analyzed where M5.1 on 10 March 2015 and M7.9 on 25 June 2015. Slant TEC (STEC) values where calculated to obtain Vertical TEC (VTEC) and the Differential of the VTEC (DVTEC) per PRN satellite for further analysis. The results showed that immediately after the flare, there where sudden enhancement of the VTEC and the DVTEC (over Bandung and Manado) at the same time. The time delay of ionospheric TEC response on M5.1 flare was approximately 2 minutes, then the VTEC increased by 0.5 TECU and the DVTEC rose sharply by 0.5 – 0.6 TECU/minutes. Moreover, the time delay after the M7.9 flare was approximately 11 minutes, then the VTEC increased by 1 TECU and the DVTEC rose sharply by 0.6 – 0.9 TECU/minutes. ABSTRAK Flare matahari berpotensi meningkatkan kerapatan elektron ionosfer secara mendadak, khususnya di lapisan D, yang dikenal sebagai Sudden Ionospheric Disturbances (SID). Peningkatan kerapatan elektron tersebut terjadi tidak hanya di lapisan D, tetapi juga di lapisan E dan F ionosfer. Total Electron Content (TEC) dari GPS merupakan jumlah banyaknya elektron total dari lapisan D sampai lapisan F. Penelitian ini bertujuan mengetahui efek flare, yang lebih besar dari kelas M5 tahun 2015, terhadap TEC ionosfer di atas Bandung dan Manado. Makalah ini merupakan hasil awal dari respon TEC ionosfer terhadap fenomena flare di atas Indonesia. Data TEC ionosfer diperoleh dari penerima GPS Ionospheric Scintillation and TEC Monitor (GISTM) di Bandung (-6,90o S; 107,60o E lintang geomagnet 16,54o LS) dan Manado (1,48oLU;124,85oBT lintang geomagnet 7,7o LS) dikaitkan dengan kejadian flare kelas M5.1 pada tanggal 10 Maret 2015 dan kelas M7.9 pada tanggal 25 Juni 2015. Nilai Slant TEC (STEC) dihitung untuk memperoleh nilai Vertical TEC (VTEC), kemudian nilai Differential of VTEC (DVTEC) per PRN satelit diperoleh untuk analisis selanjutnya. Hasil menunjukkan segera setelah terjadi flare, terjadi peningkatan VTEC dan DVTEC (di atas Bandung dan Manado) secara mendadak pada waktu yang sama. Waktu tunda dari respon TEC ionosfer setelah terjadi flare M5.1 adalah sekitar 2 menit, kemudian VTEC meningkat sebesar 0,5 TECU dan DVTEC meningkat secara tajam sebesar 0,5 – 0,6 TECU/menit. Sedangkan, waktu tunda setelah terjadi flare M7.9 adalah 11 menit, kemudian VTEC meningkat sebesar 1 TECU dan DVTEC meningkat secara tajam sebesar 0,6 – 0,9 TECU/menit.


2019 ◽  
Author(s):  
Ilya K. Edemskiy

Abstract. The paper is dedicated to investigation of localized TEC (total electron content) enhancements (LTEs), particularly of LTE series, detected in the Southern Hemisphere using global ionospheric maps for different solar activity years (2014, 2015, 2018). It is shown that LTE intensity varies in dependence on solar flux and does not directly depend on interplanetary magnetic field orientation. The enhancements occur in a subsolar region and could be observed during a continuous series of days. The highest LTE occurrence rate is observed during period of local winter (April-September) for all analyzed years. The longest observed LTE series was detected during 2014 and lasted 80 days or 120 days if we exclude 2 daily gaps.


Author(s):  
G.A. Akinyemi ◽  
L.B. Kolawole ◽  
O.F. Dairo ◽  
Alexander A. Willoughby ◽  
R.B. Abdulrahim ◽  
...  

An investigation on the diurnal and seasonal variability of ionospheric Total Electron Content (TEC) over Nigeria is carried out in this study using Global Positioning System (GPS) observable. Nigeria coordinates fall within the trough of equatorial ionization anomaly region of African sector. The TEC data used were obtained from the ground-based GPS receiver stations of the Nigerian GNSS network of stations (NIGNET). The stations with their respective geomagnetic latitudes are Abuja (−1.64º), Yola (−1.32º), Zaria (−0.13º) and Kebbi (0.72º). The results of the diurnal analysis of the relative variability index (VD) revealed higher nighttime values than daytime values. The diurnal variation of VD also showed two conspicuous peaks: the post-midnight and the post-sunset. The diurnal-seasonal variation does not reveal any consistent pattern (no particular season leads the others throughout). On the average, considering all the seasons together maximum TEC variability occurred in Zaria (62%) and least in Yola (54%). Seasonally, maximum VD was recorded during March equinox and the least was recorded during December equinox.


Sign in / Sign up

Export Citation Format

Share Document