scholarly journals Faraday Rotation, Total Electron Content, and Their Sensitivity to the Average Parallel Component of the Magnetic Field

Radio Science ◽  
2018 ◽  
Vol 53 (9) ◽  
pp. 1075-1088 ◽  
Author(s):  
A. C. Cushley ◽  
J.-M. Noël ◽  
K. Kabin

Observations at two closely spaced frequencies of the Faraday rotation of moon-reflected radio waves are described. These measurements have provided accurate values for the total electron content of the ionosphere for many hours on successive days. The observations reported here span a period of one month during the winter of 1960. Short-period fluctuations of the total electron content were observed. These were of about 2 to 3% in amplitude and occurred chiefly during the day-time. The gross shape of the F 2 region as determined by the ratio of the number of electrons above the F 2 peak to the number below was roughly constant during the day, but showed a wide scatter of values at night. The scale height of the ionizable constituent at the F 2 peak was found to be about the same as that of the neutral particles during the day, indicating almost complete mixing. At night, the scale height of the ionizable constituent appeared to increase with the planetary magnetic index K p . It is not possible to say if this was the result of heating of the region or the consequence of electrodynamic drifts.


2014 ◽  
Vol 115-116 ◽  
pp. 7-16 ◽  
Author(s):  
A.J. Mannucci ◽  
G. Crowley ◽  
B.T. Tsurutani ◽  
O.P. Verkhoglyadova ◽  
A. Komjathy ◽  
...  

2021 ◽  
Vol 44 ◽  
pp. 130-132
Author(s):  
A.V. Timchenko ◽  
◽  
F.S. Bessarab ◽  
A.V. Radievsky ◽  
◽  
...  

The paper presents the results of studies of the seasonal variability of statistical relationships between Magnetoconjugated Points (MCP) of the ionosphere. The analysis is based on the calculation of the correlation coefficients between the variations in the Total Electron Content (TEC) at points located on the same field line of the dipole magnetic field on both sides of the geomagnetic equator. Global TEC maps were used as initial data. For the four seasons of 2009 and 2015, the values of the Pearson’s correlation coefficient between the variations in the Total Electron Content in the MCP were calculated. For two levels of solar activity, we examined the seasonal features of statistical relationships between TEC variations at points located on the same field line of the dipole magnetic field on both sides of the geomagnetic equator. Pearson's correlation coefficient was calculated for the mean daily TEC variations. It was shown in the work that during the period of low solar activity, the correlation between the TEC variations in the MCP regions is weak or absent, except for autumn. In 2015, a significant correlation between magnetoconjugated regions is observed during all seasons, while in winter and summer they are localized at low latitudes and in spring and autumn at high and middle latitudes.


2019 ◽  
Author(s):  
Nadia Imtiaz ◽  
Waqar Younas ◽  
Majid Khan

Abstract. We study the impact of geomagnetic storm of September 6–9, 2017 on the low-to-mid latitude ionosphere. The prominent feature of this solar event is the sequential occurrence of the two Dst minima of maximum negative values −148 nT and −122 nT on September 8 at 2 UT and 15 UT, respectively. The study is based on analyzing the data from GPS stations and the magnetometer observatories located at different longitudinal sectors such as Asia, Africa and America. The GPS data is used to derive the global, regional and vertical total electron content (TEC) in the selected regions. The data of the magnetic observatories is used to illustrate the variation in the magnetic field particularly, the horizontal component of the magnetic field. It is observed that the storm time response of the TEC over the pre-noon sector (Asia) is earlier than Africa and America. The global thermospheric composition maps by Global Ultraviolet Imager exhibits a storm time variation in the O/N2 ratio. The positive storm effects in the vertical TEC and in the O/N2 ratio occur in the low latitudes/ equatorial regions.


Author(s):  
O.S. Bolaji ◽  
J.O. Adeniyi ◽  
I.A. Adimula ◽  
S.M. Radicella ◽  
P.H. Doherty

Sign in / Sign up

Export Citation Format

Share Document