geomagnetic equator
Recently Published Documents


TOTAL DOCUMENTS

129
(FIVE YEARS 7)

H-INDEX

20
(FIVE YEARS 1)

MAUSAM ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 377-392
Author(s):  
A. YACOB

The Sq diurnal variation in H at Trivandrum and Annamalainagar are found to be large compared with those at Alibag. The quiet day range in H at Trivandrum in the month of March is abnormally large. Though the Sq variations in V at Trivandrum are not abnormal they are larger than those at Annamalainagar and Alibag. The response of the H elements to disturbance at Trivandrum, Annamalainagar as well as Alibag are similar in sense. But the V element at Annamalainagar shows a difference in its response to disturbance. When the V elements at both Alibag and Trivandrum show an increase in numerical magnitude the V element at Annamalainagar shows a decrease and vice versa. When the magnitudes of disturbance are examined they are found to be almost the same in the H element at all the observatories (including Alibag) during night hours. But during the day the magnitudes of disturbance in H element at Trivandrum and Annamalainagar are always greater than that at Alibag, a station away from the geomagnetic equator. Effects of disturbance in the V element are greatest at Trivandrum both during the day as well as the night. The lines of force of an average disturbance field in a longitudinal plane over the region of the Indian Peninsula appear to be smooth curves with their concave side turned upwards, their turning points occurring between Annamalainagar and Alibag during the day and close to Alibag in the night.


2021 ◽  
Vol 5 (2) ◽  
pp. 531-548
Author(s):  
Aniefiok F. Akpaneno ◽  
O. N. Abdullahi

This research is monitoring equatorial geomagnetic current which causes atmospheric instabilities and affects high frequency and satellite communication. It presents the variations of Horizontal (H) and vertical (Z) component of the geomagnetic field at some Equatorial Electrojet (EEJ) Stations during quiet days. Data from five (5) observatories along the magnetic equator were used for the study. Daily baseline values for each of the geomagnetic element 𝐻 and Z were obtained. The monthly average of the diurnal variation and the seasonal variations were found. Results showed that the variations of the geomagnetic element of both H and Z differ in magnitudes from one stations to another along the geomagnetic Equator due to the differences of their geomagnetic latitude. The Amplitude curves for Z) are seen to be conspicuously opposite to that of H), and there is absence of CEJ in Z- Component but present in H- Components. The  values during the pre-sunrise hours are low compare to daytime hours. Minimum variations of dH was observed during June solstice and maximum variations was observed during Equinox season. This study shows that daily variations of (H) and (Z) occur in all the stations. The enhancement in H is as a result of EEJ current


2021 ◽  
Vol 5 (1) ◽  
pp. 539-557
Author(s):  
Aniefiok Akpaneno ◽  
O. N. Abdulahi

This research is monitoring equatorial geomagnetic current which causes atmospheric instabilities and affects high frequency and satellite communication. It presents the variations of Horizontal (H) and vertical (Z) component of the geomagnetic field at some Equatorial Electrojet (EEJ) Stations during quiet days. Data from five (5) observatories along the magnetic equator were used for the study. Daily baseline values for each of the geomagnetic element 𝐻 and Z were obtained. The monthly average of the diurnal variation and the seasonal variations were found. Results showed that the variations of the geomagnetic element of both H and Z differ in magnitudes from one stations to another along the geomagnetic Equator due to the differences of their geomagnetic latitude. The Amplitude curves for Z) are seen to be conspicuously opposite to that of H), and there is absence of CEJ in Z- Component but present in H- Components. The  values during the pre-sunrise hours are low compare to daytime hours. Minimum variations of dH was observed during June solstice and maximum variations was observed during Equinox season. This study shows that daily variations of (H) and (Z) occur in all the stations. The enhancement in H is as a result of EEJ current.


GPS Solutions ◽  
2021 ◽  
Vol 25 (2) ◽  
Author(s):  
Lucas Schreiter ◽  
Oliver Montenbruck ◽  
Franz Zangerl ◽  
Christian Siemes ◽  
Daniel Arnold ◽  
...  

AbstractGravity fields derived from GPS tracking of the three Swarm satellites have shown artifacts near the geomagnetic equator, where the carrier phase tracking on the L2 frequency is unable to follow rapid ionospheric path delay changes due to a limited tracking loop bandwidth of only 0.25 Hz in the early years of the mission. Based on the knowledge of the loop filter design, an analytical approach is developed to recover the original L2 signal from the observed carrier phase through inversion of the loop transfer function. Precise orbit determination and gravity field solutions are used to assess the quality of the correction. We show that the a posteriori RMS of the ionosphere-free GPS phase observations for a reduced-dynamic orbit determination can be reduced from 3 to 2 mm while keeping up to 7% more data in the outlier screening compared to uncorrected observations. We also show that artifacts in the kinematic orbit and gravity field solution near the geomagnetic equator can be substantially reduced. The analytical correction is able to mitigate the equatorial artifacts. However, the analytical correction is not as successful compared to the down-weighting of problematic GPS data used in earlier studies. In contrast to the weighting approaches, up to 9–10% more kinematic positions can be retained for the heavily disturbed month March 2015 and also stronger signals for gravity field estimation in the equatorial regions are obtained, as can be seen in the reduced error degree variances of the gravity field estimation. The presented approach may also be applied to other low earth orbit missions, provided that the GPS receivers offer a sufficiently high data rate compared to the tracking loop bandwidth, and provided that the basic loop-filter parameters are known.


2021 ◽  
Vol 44 ◽  
pp. 130-132
Author(s):  
A.V. Timchenko ◽  
◽  
F.S. Bessarab ◽  
A.V. Radievsky ◽  
◽  
...  

The paper presents the results of studies of the seasonal variability of statistical relationships between Magnetoconjugated Points (MCP) of the ionosphere. The analysis is based on the calculation of the correlation coefficients between the variations in the Total Electron Content (TEC) at points located on the same field line of the dipole magnetic field on both sides of the geomagnetic equator. Global TEC maps were used as initial data. For the four seasons of 2009 and 2015, the values of the Pearson’s correlation coefficient between the variations in the Total Electron Content in the MCP were calculated. For two levels of solar activity, we examined the seasonal features of statistical relationships between TEC variations at points located on the same field line of the dipole magnetic field on both sides of the geomagnetic equator. Pearson's correlation coefficient was calculated for the mean daily TEC variations. It was shown in the work that during the period of low solar activity, the correlation between the TEC variations in the MCP regions is weak or absent, except for autumn. In 2015, a significant correlation between magnetoconjugated regions is observed during all seasons, while in winter and summer they are localized at low latitudes and in spring and autumn at high and middle latitudes.


2019 ◽  
Vol 37 (4) ◽  
pp. 645-655 ◽  
Author(s):  
Xiuying Wang ◽  
Dehe Yang ◽  
Dapeng Liu ◽  
Wei Chu

Abstract. Many studies have revealed the stratification phenomenon of the topside ionospheric F2 layer using ground-based or satellite-based ionograms, which can show direct signs of this phenomenon. However, it is difficult to identify this phenomenon using the satellite-based in situ electron density data. Therefore, a statistical method, using the shuffle resampling skill, is adopted in this paper. For the first time, in situ electron density data, recorded by the same Langmuir probe aboard the DEMETER (Detection of Electro-Magnetic Emission Transmitted from Earthquake Regions) satellite at different altitudes, are analyzed, and a possible stratification phenomenon is identified using the proposed method. Our results show that the nighttime stratification, possibly a permanent phenomenon, can cover most longitudes near the geomagnetic equator, which is not found from the daytime data. The arch-like nighttime stratification decreases slowly on the summer hemisphere and thus extends a larger latitudinal distance from the geomagnetic equator. All results, obtained by the proposed method, indicate that the stratification phenomenon is more complex than what has previously been found. The proposed method is thus an effective one, which can also be used in similar studies of comparing fluctuated data.


2019 ◽  
Author(s):  
Xiuying Wang ◽  
Dehe Yang ◽  
Dapeng Liu ◽  
Wei Chu

Abstract. Many studies have revealed the stratification phenomenon of the topside ionospheric F2 layer using ground-based or satellite-based ionograms, which can show direct signs of this phenomenon. However, it is difficult to identify this phenomenon using the satellite-based in situ electron density data. Therefore, a statistical method, using the shuffle resampling skill, is adopted in this paper. For the first time, in situ electron density data, recorded by the same Langmuir probe onboard the Demeter satellite at different altitudes, are analyzed and a possible stratification phenomenon is identified using the proposed method. Our results show that the nighttime stratification, possibly a permanent phenomenon, can cover most longitudes near the geomagnetic equator, which is not found from the daytime data. The arch-like nighttime stratification decreases slowly on the summer hemisphere and thus extends a larger latitudinal distance from the geomagnetic equator. All results, obtained by the proposed method, indicate that the stratification phenomenon is more complex than what has previously been found. The proposed method thus is an effective one, which can also be used on similar studies of comparing fluctuated data.


2018 ◽  
Vol 36 (4) ◽  
pp. 1153-1160 ◽  
Author(s):  
Hisashi Hayakawa ◽  
José M. Vaquero ◽  
Yusuke Ebihara

Abstract. While low-latitude auroral displays are normally considered to be a manifestation of magnetic storms of considerable size, Silverman (2003, JGR, 108, A4) reported numerous “sporadic auroras” which appear locally at relatively low magnetic latitude during times of just moderate magnetic activity. Here, a case study is presented of an aurora near the geomagnetic equator based on a report from the Philippine islands on 27 October 1856. An analysis of this report shows it to be consistent with the known cases of sporadic auroras, except for its appearance at considerably low magnetic latitude. The record also suggests that an extremely low-latitude aurora is not always accompanied by large magnetic storms. The description of its brief appearance leads to a possible physical explanation based on an ephemeral magnetospheric disturbance provoking this sporadic aurora.


Sign in / Sign up

Export Citation Format

Share Document