scholarly journals Tractability of multivariate problems for standard and linear information in the worst case setting: Part I

2016 ◽  
Vol 207 ◽  
pp. 177-192 ◽  
Author(s):  
Erich Novak ◽  
Henryk Woźniakowski
Author(s):  
David Krieg ◽  
Mario Ullrich

AbstractWe study the $$L_2$$ L 2 -approximation of functions from a Hilbert space and compare the sampling numbers with the approximation numbers. The sampling number $$e_n$$ e n is the minimal worst-case error that can be achieved with n function values, whereas the approximation number $$a_n$$ a n is the minimal worst-case error that can be achieved with n pieces of arbitrary linear information (like derivatives or Fourier coefficients). We show that $$\begin{aligned} e_n \,\lesssim \, \sqrt{\frac{1}{k_n} \sum _{j\ge k_n} a_j^2}, \end{aligned}$$ e n ≲ 1 k n ∑ j ≥ k n a j 2 , where $$k_n \asymp n/\log (n)$$ k n ≍ n / log ( n ) . This proves that the sampling numbers decay with the same polynomial rate as the approximation numbers and therefore that function values are basically as powerful as arbitrary linear information if the approximation numbers are square-summable. Our result applies, in particular, to Sobolev spaces $$H^s_\mathrm{mix}(\mathbb {T}^d)$$ H mix s ( T d ) with dominating mixed smoothness $$s>1/2$$ s > 1 / 2 and dimension $$d\in \mathbb {N}$$ d ∈ N , and we obtain $$\begin{aligned} e_n \,\lesssim \, n^{-s} \log ^{sd}(n). \end{aligned}$$ e n ≲ n - s log sd ( n ) . For $$d>2s+1$$ d > 2 s + 1 , this improves upon all previous bounds and disproves the prevalent conjecture that Smolyak’s (sparse grid) algorithm is optimal.


2022 ◽  
pp. 1-29
Author(s):  
Wanting Lu ◽  
Heping Wang

We study the approximation of multivariate functions from a separable Hilbert space in the randomized setting with the error measured in the weighted L2 norm. We consider algorithms that use standard information Λstd consisting of function values or general linear information Λall consisting of arbitrary linear functionals. We investigate the equivalences of various notions of algebraic and exponential tractability in the randomized setting for Λstd and Λall for the normalized or absolute error criterion. For the normalized error criterion, we show that the power of Λstd is the same as that of Λall for all notions of exponential tractability and some notions of algebraic tractability without any condition. For the absolute error criterion, we show that the power of Λstd is the same as that of Λall for all notions of algebraic and exponential tractability without any condition. Specifically, we solve Open Problems 98, 101, 102 and almost solve Open Problem 100 as posed by E.Novak and H.Wo´zniakowski in the book: Tractability of Multivariate Problems, Volume III: Standard Information for Operators, EMS Tracts in Mathematics, Zürich, 2012.


Author(s):  
J.D. Geller ◽  
C.R. Herrington

The minimum magnification for which an image can be acquired is determined by the design and implementation of the electron optical column and the scanning and display electronics. It is also a function of the working distance and, possibly, the accelerating voltage. For secondary and backscattered electron images there are usually no other limiting factors. However, for x-ray maps there are further considerations. The energy-dispersive x-ray spectrometers (EDS) have a much larger solid angle of detection that for WDS. They also do not suffer from Bragg’s Law focusing effects which limit the angular range and focusing distance from the diffracting crystal. In practical terms EDS maps can be acquired at the lowest magnification of the SEM, assuming the collimator does not cutoff the x-ray signal. For WDS the focusing properties of the crystal limits the angular range of acceptance of the incident x-radiation. The range is dependent upon the 2d spacing of the crystal, with the acceptance angle increasing with 2d spacing. The natural line width of the x-ray also plays a role. For the metal layered crystals used to diffract soft x-rays, such as Be - O, the minimum magnification is approximately 100X. In the worst case, for the LEF crystal which diffracts Ti - Zn, ˜1000X is the minimum.


2008 ◽  
Author(s):  
Sonia Savelli ◽  
Susan Joslyn ◽  
Limor Nadav-Greenberg ◽  
Queena Chen

Author(s):  
Akira YAMAWAKI ◽  
Hiroshi KAMABE ◽  
Shan LU
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document