scholarly journals The broad range di- and trinucleotide exchanger SLC35B1 displays asymmetrical affinities for ATP transport across the ER membrane

2022 ◽  
pp. 101537
Author(s):  
Pablo J. Schwarzbaum ◽  
Julieta Schachter ◽  
Luis M. Bredeston
Keyword(s):  
2019 ◽  
Vol 476 (21) ◽  
pp. 3241-3260
Author(s):  
Sindhu Wisesa ◽  
Yasunori Yamamoto ◽  
Toshiaki Sakisaka

The tubular network of the endoplasmic reticulum (ER) is formed by connecting ER tubules through three-way junctions. Two classes of the conserved ER membrane proteins, atlastins and lunapark, have been shown to reside at the three-way junctions so far and be involved in the generation and stabilization of the three-way junctions. In this study, we report TMCC3 (transmembrane and coiled-coil domain family 3), a member of the TEX28 family, as another ER membrane protein that resides at the three-way junctions in mammalian cells. When the TEX28 family members were transfected into U2OS cells, TMCC3 specifically localized at the three-way junctions in the peripheral ER. TMCC3 bound to atlastins through the C-terminal transmembrane domains. A TMCC3 mutant lacking the N-terminal coiled-coil domain abolished localization to the three-way junctions, suggesting that TMCC3 localized independently of binding to atlastins. TMCC3 knockdown caused a decrease in the number of three-way junctions and expansion of ER sheets, leading to a reduction of the tubular ER network in U2OS cells. The TMCC3 knockdown phenotype was partially rescued by the overexpression of atlastin-2, suggesting that TMCC3 knockdown would decrease the activity of atlastins. These results indicate that TMCC3 localizes at the three-way junctions for the proper tubular ER network.


2007 ◽  
Vol 30 (4) ◽  
pp. 84
Author(s):  
Michael D. Jain ◽  
Hisao Nagaya ◽  
Annalyn Gilchrist ◽  
Miroslaw Cygler ◽  
John J.M. Bergeron

Protein synthesis, folding and degradation functions are spatially segregated in the endoplasmic reticulum (ER) with respect to the membrane and the ribosome (rough and smooth ER). Interrogation of a proteomics resource characterizing rough and smooth ER membranes subfractionated into cytosolic, membrane, and soluble fractions gives a spatial map of known proteins involved in ER function. The spatial localization of 224 identified unknown proteins in the ER is predicted to give insight into their function. Here we provide evidence that the proteomics resource accurately predicts the function of new proteins involved in protein synthesis (nudilin), protein translocation across the ER membrane (nicalin), co-translational protein folding (stexin), and distal protein folding in the lumen of the ER (erlin-1, TMX2). Proteomics provides the spatial localization of proteins and can be used to accurately predict protein function.


1997 ◽  
Vol 63 (2-3) ◽  
pp. 221-239 ◽  
Author(s):  
Marko Marhl ◽  
Stefan Schuster ◽  
Milan Brumen ◽  
Reinhart Heinrich

2012 ◽  
Vol 13 (1) ◽  
pp. 34 ◽  
Author(s):  
Christina Soromani ◽  
Naiyan Zeng ◽  
Klaus Hollemeyer ◽  
Elmar Heinzle ◽  
Marie-Christine Klein ◽  
...  
Keyword(s):  

Traffic ◽  
2015 ◽  
Vol 16 (10) ◽  
pp. 1027-1038 ◽  
Author(s):  
Kai-Uwe Kalies ◽  
Karin Römisch

Sign in / Sign up

Export Citation Format

Share Document