TMCC3 localizes at the three-way junctions for the proper tubular network of the endoplasmic reticulum

2019 ◽  
Vol 476 (21) ◽  
pp. 3241-3260
Author(s):  
Sindhu Wisesa ◽  
Yasunori Yamamoto ◽  
Toshiaki Sakisaka

The tubular network of the endoplasmic reticulum (ER) is formed by connecting ER tubules through three-way junctions. Two classes of the conserved ER membrane proteins, atlastins and lunapark, have been shown to reside at the three-way junctions so far and be involved in the generation and stabilization of the three-way junctions. In this study, we report TMCC3 (transmembrane and coiled-coil domain family 3), a member of the TEX28 family, as another ER membrane protein that resides at the three-way junctions in mammalian cells. When the TEX28 family members were transfected into U2OS cells, TMCC3 specifically localized at the three-way junctions in the peripheral ER. TMCC3 bound to atlastins through the C-terminal transmembrane domains. A TMCC3 mutant lacking the N-terminal coiled-coil domain abolished localization to the three-way junctions, suggesting that TMCC3 localized independently of binding to atlastins. TMCC3 knockdown caused a decrease in the number of three-way junctions and expansion of ER sheets, leading to a reduction of the tubular ER network in U2OS cells. The TMCC3 knockdown phenotype was partially rescued by the overexpression of atlastin-2, suggesting that TMCC3 knockdown would decrease the activity of atlastins. These results indicate that TMCC3 localizes at the three-way junctions for the proper tubular ER network.

2017 ◽  
Author(s):  
Verena Kriechbaumer ◽  
Lilly Maneta-Peyret ◽  
Stanley W Botchway ◽  
Jessica Upson ◽  
Louise Hughes ◽  
...  

AbstractThe family of reticulon proteins has been shown to be involved in a variety of functions in eukaryotic cells including tubulation of the endoplasmic reticulum (ER), formation of cell plates and primary plasmodesmata. Reticulons are integral ER membrane proteins characterised by a reticulon homology domain comprising four transmembrane domains which results in the reticulons sitting in the membrane in a W-topology. Here we report on a subgroup of reticulons with an extended N-terminal domain and in particular on arabidopsis reticulon 20. We show that reticulon 20 is located in a unique punctate pattern on the ER membrane. Its closest homologue reticulon 19 labels the whole ER. We show that mutants in RTN20 or RTN19, respectively, display a significant change in sterol composition in the roots indicating a role in lipid biosynthesis or regulation. A third homologue in this family - 3BETAHSD/D1- is localised to ER exit sites resulting in an intriguing location difference for the three proteins.


PLoS ONE ◽  
2014 ◽  
Vol 9 (1) ◽  
pp. e85206 ◽  
Author(s):  
Chao Zhang ◽  
Yik-Shing Kho ◽  
Zhe Wang ◽  
Yan Ting Chiang ◽  
Gary K. H. Ng ◽  
...  

2014 ◽  
Vol 395 (12) ◽  
pp. 1417-1424 ◽  
Author(s):  
Paul Whitley ◽  
Ismael Mingarro

Abstract Most integral membrane proteins located within the endomembrane system of eukaryotic cells are first assembled co-translationally into the endoplasmic reticulum (ER) before being sorted and trafficked to other organelles. The assembly of membrane proteins is mediated by the ER translocon, which allows passage of lumenal domains through and lateral integration of transmembrane (TM) domains into the ER membrane. It may be convenient to imagine multi-TM domain containing membrane proteins being assembled by inserting their first TM domain in the correct orientation, with subsequent TM domains inserting with alternating orientations. However a simple threading model of assembly, with sequential insertion of one TM domain into the membrane after another, does not universally stand up to scrutiny. In this article we review some of the literature illustrating the complexities of membrane protein assembly. We also present our own thoughts on aspects that we feel are poorly understood. In short we hope to convince the readers that threading of membrane proteins into membranes is ‘not sew simple’ and a topic that requires further investigation.


Genetics ◽  
2001 ◽  
Vol 157 (3) ◽  
pp. 1159-1168 ◽  
Author(s):  
Sheila Landry ◽  
Charles S Hoffman

AbstractFission yeast adenylate cyclase, like mammalian adenylate cyclases, is regulated by a heterotrimeric G protein. The gpa2 Gα and git5 Gβ are both required for glucose-triggered cAMP signaling. The git5 Gβ is a unique member of the Gβ family in that it lacks an amino-terminal coiled-coil domain shown to be essential for mammalian Gβ folding and interaction with Gγ subunits. Using a git5 bait in a two-hybrid screen, we identified the git11 Gγ gene. Co-immunoprecipitation studies confirm the composition of this Gβγ dimer. Cells deleted for git11 are defective in glucose repression of both fbp1 transcription and sexual development, resembling cells lacking either the gpa2 Gα or the git5 Gβ. Overexpression of the gpa2 Gα partially suppresses loss of either the git5 Gβ or the git11 Gγ, while mutational activation of the Gα fully suppresses loss of either Gβ or Gγ. Deletion of gpa2 (Gα), git5 (Gβ), or git11 (Gγ) confer quantitatively distinct effects on fbp1 repression, indicating that the gpa2 Gα subunit remains partially active in the absence of the Gβγ dimer and that the git5 Gβ subunit remains partially active in the absence of the git11 Gγ subunit. The addition of the CAAX box from the git11 Gγ to the carboxy-terminus of the git5 Gβ partially suppresses the loss of the Gγ. Thus the Gγ in this system is presumably required for localization of the Gβγ dimer but not for folding of the Gβ subunit. In mammalian cells, the essential roles of the Gβ amino-terminal coiled-coil domains and Gγ partners in Gβ folding may therefore reflect a mechanism used by cells that express multiple forms of both Gβ and Gγ subunits to regulate the composition and activity of its G proteins.


2005 ◽  
Vol 169 (6) ◽  
pp. 897-908 ◽  
Author(s):  
Cosima Luedeke ◽  
Stéphanie Buvelot Frei ◽  
Ivo Sbalzarini ◽  
Heinz Schwarz ◽  
Anne Spang ◽  
...  

Polarized cells frequently use diffusion barriers to separate plasma membrane domains. It is unknown whether diffusion barriers also compartmentalize intracellular organelles. We used photobleaching techniques to characterize protein diffusion in the yeast endoplasmic reticulum (ER). Although a soluble protein diffused rapidly throughout the ER lumen, diffusion of ER membrane proteins was restricted at the bud neck. Ultrastructural studies and fluorescence microscopy revealed the presence of a ring of smooth ER at the bud neck. This ER domain and the restriction of diffusion for ER membrane proteins through the bud neck depended on septin function. The membrane-associated protein Bud6 localized to the bud neck in a septin-dependent manner and was required to restrict the diffusion of ER membrane proteins. Our results indicate that Bud6 acts downstream of septins to assemble a fence in the ER membrane at the bud neck. Thus, in polarized yeast cells, diffusion barriers compartmentalize the ER and the plasma membrane along parallel lines.


2018 ◽  
Vol 116 (2) ◽  
pp. 556-565 ◽  
Author(s):  
Congwu Chi ◽  
Andrea Leonard ◽  
Walter E. Knight ◽  
Kevin M. Beussman ◽  
Yuanbiao Zhao ◽  
...  

Mutations in lysosomal-associated membrane protein 2 (LAMP-2) gene are associated with Danon disease, which often leads to cardiomyopathy/heart failure through poorly defined mechanisms. Here, we identify the LAMP-2 isoform B (LAMP-2B) as required for autophagosome–lysosome fusion in human cardiomyocytes (CMs). Remarkably, LAMP-2B functions independently of syntaxin 17 (STX17), a protein that is essential for autophagosome–lysosome fusion in non-CMs. Instead, LAMP-2B interacts with autophagy related 14 (ATG14) and vesicle-associated membrane protein 8 (VAMP8) through its C-terminal coiled coil domain (CCD) to promote autophagic fusion. CMs derived from induced pluripotent stem cells (hiPSC-CMs) from Danon patients exhibit decreased colocalization between ATG14 and VAMP8, profound defects in autophagic fusion, as well as mitochondrial and contractile abnormalities. This phenotype was recapitulated by LAMP-2B knockout in non-Danon hiPSC-CMs. Finally, gene correction of LAMP-2 mutation rescues the Danon phenotype. These findings reveal a STX17-independent autophagic fusion mechanism in human CMs, providing an explanation for cardiomyopathy in Danon patients and a foundation for targeting defective LAMP-2B–mediated autophagy to treat this patient population.


Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3815
Author(s):  
Chih-Chang Hung ◽  
Fu-An Li ◽  
Shih-Shin Liang ◽  
Ling-Feng Wang ◽  
I-Ling Lin ◽  
...  

Prolonged treatment with cisplatin (CDDP) frequently develops chemoresistance. We have previously shown that p22phox, an endoplasmic reticulum (ER) membrane protein, confers CDDP resistance by blocking CDDP nuclear entry in oral squamous cell carcinoma (OSCC) cells; however, the underlying mechanism remains unresolved. Using a fluorescent dye-labeled CDDP, here we show that CDDP can bind to p22phox in both cell-based and cell-free contexts. Subsequent detection of CDDP-peptide interaction by the Tris-Tricine-based electrophoresis revealed that GA-30, a synthetic peptide matching a region of the cytosolic domain of p22phox, could interact with CDDP. These results were further confirmed by liquid chromatography–mass spectrometry (LC–MS) analysis, from which MA-11, an 11-amino acid subdomain of the GA-30 domain, could largely account for the interaction. Amino acid substitutions at Cys50, Met65 and Met73, but not His72, significantly impaired the binding between CDDP and the GA-30 domain, thereby suggesting the potential CDDP-binding residues in p22phox protein. Consistently, the p22phox point mutations at Cys50, Met65 and Met73, but not His72, resensitized OSCC cells to CDDP-induced cytotoxicity and apoptosis. Finally, p22phox might have binding specificity for the platinum drugs, including CDDP, carboplatin and oxaliplatin. Together, we have not only identified p22phox as a novel CDDP-binding protein, but further highlighted the importance of such a drug-protein interaction in drug resistance.


2019 ◽  
Vol 116 (45) ◽  
pp. 22619-22623 ◽  
Author(s):  
Andrés Guillén-Samander ◽  
Xin Bian ◽  
Pietro De Camilli

Contacts between the endoplasmic reticulum (ER) and other membranes are hot spots for protein-mediated lipid transport between the 2 adjacent bilayers. Compiling a molecular inventory of lipid transport proteins present at these sites is a premise to the elucidation of their function. Here we show that PDZD8, an intrinsic membrane protein of the ER with a lipid transport module of the SMP domain family, concentrates at contacts between the ER and late endosomes/lysosomes, where it interacts with GTP-Rab7. These findings suggest that PDZD8 may cooperate with other proteins that function at the ER–endo/lysosome interface in coordinating endocytic flow with lipid transport between endocytic membranes and the ER.


2020 ◽  
Vol 27 (1) ◽  
Author(s):  
Yo-hei Yamamoto ◽  
Takeshi Noda

Abstract Autophagy is a process in which a myriad membrane structures called autophagosomes are formed de novo in a single cell, which deliver the engulfed substrates into lysosomes for degradation. The size of the autophagosomes is relatively uniform in non-selective autophagy and variable in selective autophagy. It has been recently established that autophagosome formation occurs near the endoplasmic reticulum (ER). In this review, we have discussed recent advances in the relationship between autophagosome formation and endoplasmic reticulum. Autophagosome formation occurs near the ER subdomain enriched with phospholipid synthesizing enzymes like phosphatidylinositol synthase (PIS)/CDP-diacylglycerol-inositol 3-phosphatidyltransferase (CDIPT) and choline/ethanolamine phosphotransferase 1 (CEPT1). Autophagy-related protein 2 (Atg2), which is involved in autophagosome formation has a lipid transfer capacity and is proposed to directly transfer the lipid molecules from the ER to form autophagosomes. Vacuole membrane protein 1 (VMP1) and transmembrane protein 41b (TMEM41b) are ER membrane proteins that are associated with the formation of the subdomain. Recently, we have reported that an uncharacterized ER membrane protein possessing the DNAJ domain, called ERdj8/DNAJC16, is associated with the regulation of the size of autophagosomes. The localization of ERdj8/DNAJC16 partially overlaps with the PIS-enriched ER subdomain, thereby implying its association with autophagosome size determination.


2000 ◽  
Vol 11 (5) ◽  
pp. 1697-1708 ◽  
Author(s):  
Sharon Wilhovsky ◽  
Richard Gardner ◽  
Randolph Hampton

Work from several laboratories has indicated that many different proteins are subject to endoplasmic reticulum (ER) degradation by a common ER-associated machinery. This machinery includes ER membrane proteins Hrd1p/Der3p and Hrd3p and the ER-associated ubiquitin-conjugating enzymes Ubc7p and Ubc6p. The wide variety of substrates for this degradation pathway has led to the reasonable hypothesis that the HRD (Hmg CoA reductase degradation) gene-encoded proteins are generally involved in ER protein degradation in eukaryotes. We have tested this model by directly comparing the HRD dependency of the ER-associated degradation for various ER membrane proteins. Our data indicated that the role of HRD genes in protein degradation, even in this highly defined subset of proteins, can vary from absolute dependence to complete independence. Thus, ER-associated degradation can occur by mechanisms that do not involve Hrd1p or Hrd3p, despite their apparently broad envelope of substrates. These data favor models in which the HRD gene-encoded proteins function as specificity factors, such as ubiquitin ligases, rather than as factors involved in common aspects of ER degradation.


Sign in / Sign up

Export Citation Format

Share Document