scholarly journals Does a micro-grooved trunnion stem surface finish improve fixation and reduce fretting wear at the taper junction of total hip replacements? A finite element evaluation

2017 ◽  
Vol 63 ◽  
pp. 47-54 ◽  
Author(s):  
Ariyan Ashkanfar ◽  
David J. Langton ◽  
Thomas J. Joyce
Author(s):  
Lin Wang ◽  
Graham Isaac ◽  
Ruth Wilcox ◽  
Alison Jones ◽  
Jonathan Thompson

Evaluation and prediction of wear play a key role in product design and material selection of total hip replacements, because wear debris is one of the main causes of loosening and failure. Multifactorial clinical or laboratory studies are high cost and require unfeasible timeframes for implant development. Simulation using finite element methods is an efficient and inexpensive alternative to predict wear and pre-screen various parameters. This article presents a comprehensive literature review of the state-of-the-art finite element modelling techniques that have been applied to evaluate wear in polyethylene hip replacement components. A number of knowledge gaps are identified including the need to develop appropriate wear coefficients and the analysis of daily living activities.


Author(s):  
K J Drabu ◽  
R J Michaud ◽  
P J J McCullagh ◽  
K Brummitt ◽  
R A Smith

Changes to the bearing surfaces of eighteen uncemented total hip replacements retrieved at revision surgery were assessed by three-dimensional binocular microscopy, Rank Taylor Hobson talysurf measurements, scanning electron microscopy, and X-ray dispersive analysis. Abrasions on the non-articular surface of the polyethylene cups were present. Bone particles were found in tracks in the bearing surfaces of both the titanium femoral heads and the polyethylene cups and were responsible for wear of these surfaces. Although the wear of the femoral heads appeared substantial to naked eye examination, the surface finish of these surfaces remained within the British ISO standards for titanium alloy when assessed by the methods used above. This study concluded that direct contact between polyethylene and bone should be avoided in total hip arthroplasty and that ‘third body’ wear from bone particles occurred in these uncemented prostheses. Both components of this type of implant should be replaced at revision surgery and titanium should be avoided as a bearing surface in hip arthroplasty. Present methods of assessing the surface finish of titanium should be re-evaluated and more reliable ones considered.


2021 ◽  
Vol 11 (6) ◽  
pp. 2852
Author(s):  
Maeruan Kebbach ◽  
Christian Schulze ◽  
Christian Meyenburg ◽  
Daniel Kluess ◽  
Mevluet Sungu ◽  
...  

The calculation of range of motion (ROM) is a key factor during preoperative planning of total hip replacements (THR), to reduce the risk of impingement and dislocation of the artificial hip joint. To support the preoperative assessment of THR, a magnetic resonance imaging (MRI)-based computational framework was generated; this enabled the estimation of patient-specific ROM and type of impingement (bone-to-bone, implant-to-bone, and implant-to-implant) postoperatively, using a three-dimensional computer-aided design (CAD) to visualize typical clinical joint movements. Hence, patient-specific CAD models from 19 patients were generated from MRI scans and a conventional total hip system (Bicontact® hip stem and Plasmacup® SC acetabular cup with a ceramic-on-ceramic bearing) was implanted virtually. As a verification of the framework, the ROM was compared between preoperatively planned and the postoperatively reconstructed situations; this was derived based on postoperative radiographs (n = 6 patients) during different clinically relevant movements. The data analysis revealed there was no significant difference between preoperatively planned and postoperatively reconstructed ROM (∆ROM) of maximum flexion (∆ROM = 0°, p = 0.854) and internal rotation (∆ROM = 1.8°, p = 0.917). Contrarily, minor differences were observed for the ROM during maximum external rotation (∆ROM = 9°, p = 0.046). Impingement, of all three types, was in good agreement with the preoperatively planned and postoperatively reconstructed scenarios during all movements. The calculated ROM reached physiological levels during flexion and internal rotation movement; however, it exceeded physiological levels during external rotation. Patients, where implant-to-implant impingement was detected, reached higher ROMs than patients with bone-to-bone impingement. The proposed framework provides the capability to predict postoperative ROM of THRs.


Sign in / Sign up

Export Citation Format

Share Document