Development of intra-strain self-cloning procedure for breeding baker's yeast strains

2017 ◽  
Vol 123 (3) ◽  
pp. 319-326 ◽  
Author(s):  
Youji Nakagawa ◽  
Hiroyuki Ogihara ◽  
Chisato Mochizuki ◽  
Hideki Yamamura ◽  
Yuzuru Iimura ◽  
...  
2018 ◽  
Vol 84 (12) ◽  
Author(s):  
Daisuke Watanabe ◽  
Hiroshi Sekiguchi ◽  
Yukiko Sugimoto ◽  
Atsushi Nagasawa ◽  
Naotaka Kida ◽  
...  

ABSTRACT Freeze-thaw stress causes various types of cellular damage, survival and/or proliferation defects, and metabolic alterations. However, the mechanisms underlying how cells cope with freeze-thaw stress are poorly understood. Here, model dough fermentations using two baker's yeast strains, 45 and YF, of Saccharomyces cerevisiae were compared after 2 weeks of cell preservation in a refrigerator or freezer. YF exhibited slow fermentation after exposure to freeze-thaw stress due to low cell viability. A DNA microarray analysis of the YF cells during fermentation revealed that the genes involved in oxidative phosphorylation were relatively strongly expressed, suggesting a decrease in the glycolytic capacity. Furthermore, we found that mRNA levels of the genes that encode the components of the proteasome complex were commonly low, and ubiquitinated proteins were accumulated by freeze-thaw stress in the YF strain. In the cells with a laboratory strain background, treatment with the proteasome inhibitor MG132 or the deletion of each transcriptional activator gene for the proteasome genes ( RPN4 , PDR1 , or PDR3 ) led to marked impairment of model dough fermentation using the frozen cells. Based on these data, proteasomal degradation of freeze-thaw-damaged proteins may guarantee high cell viability and fermentation performance. We also found that the freeze-thaw stress-sensitive YF strain was heterozygous at the PDR3 locus, and one of the alleles (A148T/A229V/H336R/L541P) was shown to possess a dominant negative phenotype of slow fermentation. Removal of such responsible mutations could improve the freeze-thaw stress tolerance and the fermentation performance of baker's yeast strains, as well as other industrial S. cerevisiae strains. IMPORTANCE The development of freezing technology has enabled the long-term preservation and long-distance transport of foods and other agricultural products. Fresh yeast, however, is usually not frozen because the fermentation performance and/or the viability of individual cells is severely affected after thawing. Here, we demonstrate that proteasomal degradation of ubiquitinated proteins is an essential process in the freeze-thaw stress responses of S. cerevisiae . Upstream transcriptional activator genes for the proteasome components are responsible for the fermentation performance after freezing preservation. Thus, this study provides a potential linkage between freeze-thaw stress inputs and the transcriptional regulatory network that might be functionally conserved in higher eukaryotes. Elucidation of the molecular targets of freeze-thaw stress will contribute to advances in cryobiology, such as freezing preservation of human cells, tissues, and embryos for medical purposes and breeding of industrial microorganisms and agricultural crops that adapt well to low temperatures.


1999 ◽  
Vol 28 (2) ◽  
pp. 148-152 ◽  
Author(s):  
S. F. Vincent ◽  
P. J. L. Bell ◽  
P. Bissinger ◽  
K. M. H. Nevalainen

Fermentation ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 102
Author(s):  
Nerve Zhou ◽  
Thandiwe Semumu ◽  
Amparo Gamero

Saccharomyces cerevisiae remains the baker’s yeast of choice in the baking industry. However, its ability to ferment cereal flour sugars and accumulate CO2 as a principal role of yeast in baking is not as unique as previously thought decades ago. The widely conserved fermentative lifestyle among the Saccharomycotina has increased our interest in the search for non-conventional yeast strains to either augment conventional baker’s yeast or develop robust strains to cater for the now diverse consumer-driven markets. A decade of research on alternative baker’s yeasts has shown that non-conventional yeasts are increasingly becoming important due to their wide carbon fermentation ranges, their novel aromatic flavour generation, and their robust stress tolerance. This review presents the credentials of non-conventional yeasts as attractive yeasts for modern baking. The evolution of the fermentative trait and tolerance to baking-associated stresses as two important attributes of baker’s yeast are discussed besides their contribution to aroma enhancement. The review further discusses the approaches to obtain new strains suitable for baking applications.


1990 ◽  
Vol 4 (4) ◽  
pp. 285-290 ◽  
Author(s):  
Ch. Gysler ◽  
P. Kneuss ◽  
P. Niederberger

2011 ◽  
Vol 396-398 ◽  
pp. 1531-1535
Author(s):  
Yan Zhang ◽  
Dong Guang Xiao ◽  
Cui Ying Zhang ◽  
Xi Sun ◽  
Ming Yue Wu

Mig1p, a zinc finger class of DNA-binding protein, plays a critical role in glucose repression for maltose utilization in Baker’s yeast. Maltose is the hydrolyzate of starch, which is the main component of dough. In this study, the recombinant yeast strains with MIG1 gene deletion were constructed, and the maltose metabolism of the parental and mutant strains in batch cultivations were investigated. Our results show that the degree of glucose repression of mutants △MIG1α and △MIG1a are reduced by 49.88% and 41.59% respectively compared to their parental strains, suggesting that MIG1 deletion can partially relieve glucose repression of maltose metabolism.


Author(s):  
Patrícia Regina Kitaka ◽  
Glyn Mara Figueira ◽  
Marta Cristina Teixeira Duarte ◽  
Cláudia Steckelberg ◽  
Camila Delarmelina ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document