Saturation-mutagenesis in two positions distant from active site of a Klebsiella pneumoniae glycerol dehydratase identifies some highly active mutants

2009 ◽  
Vol 144 (1) ◽  
pp. 43-50 ◽  
Author(s):  
Xianghui Qi ◽  
Yunlai Chen ◽  
Ke Jiang ◽  
Wenpu Zuo ◽  
Zhaofei Luo ◽  
...  
2011 ◽  
Vol 34 (2) ◽  
pp. 339-346 ◽  
Author(s):  
Xianghui Qi ◽  
Qi Guo ◽  
Yuotuo Wei ◽  
Hong Xu ◽  
Ribo Huang

2020 ◽  
Vol MA2020-02 (36) ◽  
pp. 2271-2271
Author(s):  
Davide Menga ◽  
Iztok Arcon ◽  
Yan-Sheng Li ◽  
Friedrich E. Wagner ◽  
Burak Koyutürk ◽  
...  
Keyword(s):  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yossef López de los Santos ◽  
Ying Lian Chew-Fajardo ◽  
Guillaume Brault ◽  
Nicolas Doucet

Abstract A key event in the directed evolution of enzymes is the systematic use of mutagenesis and selection, a process that can give rise to mutant libraries containing millions of protein variants. To this day, the functional analysis and identification of active variants among such high numbers of mutational possibilities is not a trivial task. Here, we describe a combinatorial semi-rational approach to partly overcome this challenge and help design smaller and smarter mutant libraries. By adapting a liquid medium transesterification assay in organic solvent conditions with a combination of virtual docking, iterative saturation mutagenesis, and residue interaction network (RIN) analysis, we engineered lipase B from P. antarctica (CalB) to improve enzyme recognition and activity against the bulky aromatic substrates and flavoring agents methyl cinnamate and methyl salicylate. Substrate-imprinted docking was used to target active-site positions involved in enzyme-substrate and enzyme-product complexes, in addition to identifying ‘hot spots’ most likely to yield active variants. This iterative semi-rational design strategy allowed selection of CalB variants exhibiting increased activity in just two rounds of site-saturation mutagenesis. Beneficial replacements were observed by screening only 0.308% of the theoretical library size, illustrating how semi-rational approaches with targeted diversity can quickly facilitate the discovery of improved activity variants relevant to a number of biotechnological applications.


1987 ◽  
Vol 243 (2) ◽  
pp. 561-567 ◽  
Author(s):  
B Joris ◽  
F De Meester ◽  
M Galleni ◽  
J M Frère ◽  
J Van Beeumen

beta-Lactamase K1 was purified from Klebsiella pneumoniae SC10436. It is very similar to the enzyme produced by Klebsiella aerogenes 1082E and described by Emanuel, Gagnon & Waley [Biochem. J. (1986) 234, 343-347]. An active-site peptide was isolated after labelling of the enzyme with tritiated beta-iodopenicillanate. A cysteine residue was found just before the active-site serine residue. This result could explain the properties of the enzyme after modification by thiol-blocking reagents. The sequence of the active-site peptide clearly established the enzyme as a class A beta-lactamase.


1984 ◽  
Vol 217 (1) ◽  
pp. 317-321 ◽  
Author(s):  
T R Hawkes ◽  
P A McLean ◽  
B E Smith

When the iron-molybdenum cofactor (FeMoco) was extracted from the MoFe protein of nitrogenase from a nifV mutant of Klebsiella pneumoniae and combined with the FeMoco-deficient MoFe protein from a nifB mutant, the resultant MoFe protein exhibited the NifV phenotype, i.e. in combination with wild-type Fe protein it exhibited poor N2-fixation activity and its H2-evolution activity was inhibited by CO. These data provide strong evidence that FeMoco contains the active site of nitrogenase. The metal contents and e.p.r. properties of FeMoco from wild-type and nifV mutants of K. pneumoniae are very similar.


1997 ◽  
Vol 322 (2) ◽  
pp. 507-510 ◽  
Author(s):  
Fiorella TONELLO ◽  
Giampietro SCHIAVO ◽  
Cesare MONTECUCCO

Tetanus neurotoxin was depleted of its catalytic Zn2+ ion, and the apotoxin was reconstituted with different transition metal ions. The Mn2+- and Co2+-tetanus neurotoxins are highly active in the proteolysis of vesicle-associated membrane protein/synaptobrevin, the natural substrate of this toxin, whereas Cu2+ and Fe2+ minimally supported proteolytic activity. The visible absorbance spectrum of Co2+-tetanus neurotoxin shows a maximum at 538 nm with a molar absorption coefficient of 82 M-1·cm-1. These results indicate that the Zn2+ environment at the active site of tetanus neurotoxin is different from those of known Zn2+-endopeptidases and provide a structural basis for the definition of tetanus neurotoxin, and the related clostridial neurotoxins, as an independent family of metalloproteases.


Sign in / Sign up

Export Citation Format

Share Document