Influence of Specific Growth Rate on Specific Productivity and Intermolecular disulfide bond of Recombinant Protein Produced by a Pichia pastoris Mut+ Strain

2010 ◽  
Vol 150 ◽  
pp. 540-540
Author(s):  
Dan Wu ◽  
Ju Chu ◽  
Yu-You Hao ◽  
Yong-Hong Wang ◽  
Ying-Ping Zhuang ◽  
...  
2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Javier Garrigós-Martínez ◽  
Miguel Angel Nieto-Taype ◽  
Arnau Gasset-Franch ◽  
José Luis Montesinos-Seguí ◽  
Xavier Garcia-Ortega ◽  
...  

Abstract Background The PAOX1-based expression system is the most widely used for producing recombinant proteins in the methylotrophic yeast Pichia pastoris (Komagataella phaffii). Despite relevant recent advances in regulation of the methanol utilization (MUT) pathway have been made, the role of specific growth rate (µ) in AOX1 regulation remains unknown, and therefore, its impact on protein production kinetics is still unclear. Results The influence of heterologous gene dosage, and both, operational mode and strategy, on culture physiological state was studied by cultivating the two PAOX1-driven Candida rugosa lipase 1 (Crl1) producer clones. Specifically, a clone integrating a single expression cassette of CRL1 was compared with one containing three cassettes over broad dilution rate and µ ranges in both chemostat and fed-batch cultivations. Chemostat cultivations allowed to establish the impact of µ on the MUT-related MIT1 pool which leads to a bell-shaped relationship between µ and PAOX1-driven gene expression, influencing directly Crl1 production kinetics. Also, chemostat and fed-batch cultivations exposed the favorable effects of increasing the CRL1 gene dosage (up to 2.4 fold in qp) on Crl1 production with no significant detrimental effects on physiological capabilities. Conclusions PAOX1-driven gene expression and Crl1 production kinetics in P. pastoris were successfully correlated with µ. In fact, µ governs MUT-related MIT1 amount that triggers PAOX1-driven gene expression—heterologous genes included—, thus directly influencing the production kinetics of recombinant protein.


2007 ◽  
Vol 99 (2) ◽  
pp. 368-377 ◽  
Author(s):  
Jonas Schenk ◽  
Krisztina Balazs ◽  
Carmen Jungo ◽  
Julien Urfer ◽  
Carole Wegmann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document