Computational approach for designing thermostable Candida antarctica lipase B by molecular dynamics simulation

2014 ◽  
Vol 192 ◽  
pp. 66-70 ◽  
Author(s):  
Hyun June Park ◽  
Kyungmoon Park ◽  
Yong Hwan Kim ◽  
Young Je Yoo
2022 ◽  
Author(s):  
Zohreh Nazarian ◽  
Seyed Shahriar Arab

With the aim of gaining understanding of the molecular basis of Candida antarctica lipase B (CALB) catalyzed regioselective mono aza-Michael addition of Benzhydrazide to Diethyl maleat (DEM) we decided to carry out molecular dynamics (MD) simulation studies in parallel with our experimental study. We found a correlation between the activity of CALB and the choice of solvent. Our study showed that solvent affects the performance of the enzyme due to the binding of solvent molecules to the enzyme active site region, and the solvation energy of substrates in the different solvents. We found that CALB is only active in nonpolar solvent (i.e. Hexane), and therefore we investigated the influence of Hexane on the catalytic activity of CALB for the reaction. The results of this study and related experimental validation from our studies have been discussed here.


2018 ◽  
Vol 129 ◽  
pp. 12-24 ◽  
Author(s):  
Nathalia Saraiva Rios ◽  
Maisa Pessoa Pinheiro ◽  
Magno Luís Bezerra Lima ◽  
Denise Maria Guimarães Freire ◽  
Ivanildo José da Silva ◽  
...  

2002 ◽  
Vol 80 (6) ◽  
pp. 565-570 ◽  
Author(s):  
Szilvia Gedey ◽  
Arto Liljeblad ◽  
László Lázár ◽  
Ferenc Fülöp ◽  
Liisa T Kanerva

The Candida antarctica lipase B-catalyzed reactions of five β-amino esters with neat butyl butanoate and with 2,2,2-trifluoroethyl butanoate in diisopropyl ether were studied, as were the reactions of the same β-amino esters and their N-butanamides with neat butanol. The possibility for sequential resolution, where the amino and ester functions of the substrate both react with an achiral butanoate, became less likely with increasing size of the substrate from ethyl 3-aminobutanoate (1a) to pentanoate (1b) or larger. On the other hand, the alcoholyses of N-acylated β-amino esters successfully proceeded in butanol with E > 100. Gram-scale resolution of the N-butanoylated 1a was performed to demonstrate the usefulness of the method. Key words: lipase, interesterification, acylation, alcoholysis, resolution, β-amino esters.


Sign in / Sign up

Export Citation Format

Share Document