scholarly journals An additive manufacturing oriented design approach to mechanical assemblies

2017 ◽  
Vol 5 (1) ◽  
pp. 3-18 ◽  
Author(s):  
Germain Sossou ◽  
Frédéric Demoly ◽  
Ghislain Montavon ◽  
Samuel Gomes

Abstract Firstly introduced as a prototyping process, additive manufacturing (AM) is being more and more considered as a fully-edged manufacturing process. The number of AM processes, along with the range of processed materials are expanding. AM has made manufacturable shapes that were too difficult (or even impossible) to manufacture with conventional technologies. This has promoted a shift in engineering design, from conventional design for manufacturing and assembly to design for additive manufacturing (DFAM). Research efforts into the DFAM field have been mostly dedicated to part's design, which is actually a requirement for a better industrial adoption. This has given rise to topologically optimized and/or latticed designs. However, since AM is also capable of manufacturing fully functional assemblies requiring a few or no assembly operations, there is a need for DFAM methodologies tackling product's development more holistically, and which are, therefore, dedicated to assembly design. Considering all the manufacturing issues related to AM of assembly-free mechanisms and available post-processing capabilities, this paper proposes a top-down assembly design methodology for AM in a proactive manner. Such an approach, can be seen as the beginning of a shift from conventional design for assembly (DFA) to a new paradigm. From a product's concept and a selected AM technology, the approach first provides assistance in the definition of the product architecture so that both functionality and successful manufacturing (including post-processing) are ensured. Particularly, build-orientation and downstream processes' characteristics are taken into account early in the design process. Secondly, for the functional flow (energy, material, signal) to be appropriately conveyed by the right amount of matter, the methodology provides guidance into how the components can be designed in a minimalism fashion leveraging the shape complexity afforded by AM. A mechanical assembly as case study is presented to illustrate the DFAM methodology. It is found that clearances and material (be it raw unprocessed material or support structures) within them plays a pivotal role in a successful assembly's design to be additively manufactured. In addition, the methodology for components' design proves to be an efficient alternative to topology optimization. Though, the approach can be extended by considering a strategy for part consolidation and the possibility to manufacture the assemblies with more than one AM process. As regards components' design, considering anisotropy can also improved the approach. Highlights Additive manufacturing is capable of printing fully functional assemblies without any assembly operations. It is found that Design For Additive Manufacturing is currently mainly focused on part's design. A process-independent, structured and systematic method for designing assembly-free mechanisms (for AM) is proposed. Build orientation and downstream processes (including post-processing capabilities) are taken into account early in the design process. A method - based on functional flows - for part's design in a minimalist fashion, is proposed.

2021 ◽  
Vol 1 ◽  
pp. 2571-2580
Author(s):  
Filip Valjak ◽  
Angelica Lindwall

AbstractThe advent of additive manufacturing (AM) in recent years have had a significant impact on the design process. Because of new manufacturing technology, a new area of research emerged – Design for Additive Manufacturing (DfAM) with newly developed design support methods and tools. This paper looks into the current status of the field regarding the conceptual design of AM products, with the focus on how literature sources treat design heuristics and design principles in the context of DfAM. To answer the research question, a systematic literature review was conducted. The results are analysed, compared and discussed on three main points: the definition of the design heuristics and the design principles, level of support they provide, as well as where and how they are used inside the design process. The paper highlights the similarities and differences between design heuristics and design principles in the context of DfAM.


Metals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 137 ◽  
Author(s):  
Ian Gibson ◽  
Amir Khorasani

The first modern additive manufacturing machines, developed in the early 1990s, primarily made parts using polymers [...]


2021 ◽  
Vol 27 (11) ◽  
pp. 90-105
Author(s):  
Anton Wiberg ◽  
Johan Persson ◽  
Johan Ölvander

Purpose The purpose of this paper is to present a Design for Additive Manufacturing (DfAM) methodology that connects several methods, from geometrical design to post-process selection, into a common optimisation framework. Design/methodology/approach A design methodology is formulated and tested in a case study. The outcome of the case study is analysed by comparing the obtained results with alternative designs achieved by using other design methods. The design process in the case study and the potential of the method to be used in different settings are also discussed. Finally, the work is concluded by stating the main contribution of the paper and highlighting where further research is needed. Findings The proposed method is implemented in a novel framework which is applied to a physical component in the case study. The component is a structural aircraft part that was designed to minimise weight while respecting several static and fatigue structural load cases. An addition goal is to minimise the manufacturing cost. Designs optimised for manufacturing by two different AM machines (EOS M400 and Arcam Q20+), with and without post-processing (centrifugal finishing) are considered. The designs achieved in this study show a significant reduction in both weight and cost compared to one AM manufactured geometry designed using more conventional methods and one design milled in aluminium. Originality/value The method in this paper allows for the holistic design and optimisation of components while considering manufacturability, cost and component functionality. Within the same framework, designs optimised for different setups of AM machines and post-processing can be automatically evaluated without any additional manual work.


2021 ◽  
pp. 1-56
Author(s):  
Anastasia Schauer ◽  
Kenton Fillingim ◽  
Katherine Fu

Abstract The goal of this work is to study the way student designers use design for additive manufacturing (DfAM) rules, or heuristics. It can be challenging for novice designers to succeed at creating successful designs for additive manufacturing (AM), given its differences from traditional manufacturing methods. A study was carried out to investigate the way novices apply DfAM heuristics when they receive them at different points in the design process. A design problem was presented to students, and three different groups of student participants were given a lecture on DfAM heuristics at three different points in the design process. The novelty and quality of each of the resulting designs was evaluated. Results indicate that although the DfAM heuristics lecture had no impact on the overall quality of the designs generated, participants who were given the heuristics lecture after the initial design session produced designs that were better suited for 3D printing in the second phase of the design activity. However, receiving this additional information appears to prevent students from creatively iterating upon their initial designs, as participants in this group did not experience an increase in novelty between the two sessions. Additionally, receiving the heuristics lecture increased all students' perceptions of their ability to perform DfAM-related tasks. These results validate the practicality of design heuristics as AM training tools while also emphasizing the importance of iteration in the design process.


2021 ◽  
Vol 1 ◽  
pp. 1937-1946
Author(s):  
Aurora Berni ◽  
Yuri Borgianni ◽  
Martins Obi ◽  
Patrick Pradel ◽  
Richard Bibb

AbstractThe concept of Design for Additive Manufacturing (DfAM) is gaining popularity along with AM, despite its scopes are not well established. In particular, in the last few years, DfAM methods have been intuitively subdivided into opportunistic and restrictive. This distinction is gaining traction despite a lack of formalization. In this context, the paper investigates experts' understanding of DfAM. In particular, the authors have targeted educators, as the perception of DfAM scopes in the future will likely depend on teachers' view. A bespoke survey has been launched, which has been answer by 100 worldwide-distributed respondents. The gathered data has undergone several analyses, markedly answers to open questions asking for individual definitions of DfAM, and evaluations of the pertinence of meanings and acceptations from the literature. The results show that the main DfAM aspects focused on by first standardization attempts have been targeted, especially products, processes, opportunities and constraints. Beyond opportunistic and restrictive nuances, DfAM different understandings are characterized by different extents of cognitive endeavor, convergence vs. divergence in the design process, theoretical vs. hands on approaches.


Author(s):  
Satyandra K. Gupta ◽  
Christiaan J. J. Paredis ◽  
Rajarishi Sinha ◽  
Cheng-Hua Wang ◽  
Peter F. Brown

Abstract Rapid technical advances in many different areas of scientific computing provide the enabling technologies for creating a comprehensive simulation and visualization environment for assembly design and planning. We have built an intelligent environment in which simple simulations can be composed together to create complex simulations for detecting potential assembly problems. Our goal in this project is to develop high fidelity assembly simulation and visualization tools that can detect assembly related problems without going through physical mock-ups. In addition, these tools can be used to create easy-to-visualize instructions for performing assembly and service operations.


Sign in / Sign up

Export Citation Format

Share Document