Influence of arabinoxylan on the drying of cellulose nanocrystals suspension: From coffee ring to Maltese cross pattern and application to enzymatic detection

Author(s):  
Malika Talantikite ◽  
Nadège Leray ◽  
Sylvie Durand ◽  
Céline Moreau ◽  
Bernard Cathala
2020 ◽  
pp. 54-59
Author(s):  
A. A. Yelizarov ◽  
A. A. Skuridin ◽  
E. A. Zakirova

A computer model and the results of a numerical experiment for a sensitive element on a planar mushroom-shaped metamaterial with cells of the “Maltese cross” type are presented. The proposed electrodynamic structure is shown to be applicable for nondestructive testing of geometric and electrophysical parameters of technological media, as well as searching for inhomogeneities in them. Resonant frequency shift and change of the attenuation coefficient value of the structure serve as informative parameters.


2019 ◽  
Author(s):  
Valentina Guccini ◽  
Sugam Kumar ◽  
Yulia Trushkina ◽  
Gergely Nagy ◽  
Christina Schütz ◽  
...  

The magnetic alignment of cellulose nanocrystals (CNC) and lepidocrocite nanorods (LpN), pristine and in hybrid suspensions has been investigated using contrast-matched small-angle neutron scattering (SANS) under in situ magnetic fields (0 – 6.8 T) and polarized optical microscopy. The pristine CNC (diamagnetic) and pristine LpN (paramagnetic) align perpendicular and parallel to the direction of field, respectively. The alignment of both the nanoparticles in their hybrid suspensions depends on the relative amount of the two components (CNC and LpN) and strength of the applied magnetic field. In the presence of 10 wt% LpN and fields < 1.0 T, the CNC align parallel to the field. In the hybrid containing lower amount of LpN (1 wt%), the ordering of CNC is partially frustrated in all range of magnetic field. At the same time, the LpN shows both perpendicular and parallel orientation, in the presence of CNC. This study highlights that the natural perpendicular ordering of CNC can be switched to parallel by weak magnetic fields and the incorporation of paramagnetic nanoparticle as LpN, as well it gives a method to influence the orientation of LpN.<br>


Author(s):  
Shaoqu Xie ◽  
◽  
Xiao Zhang ◽  
Michael P. Walcott ◽  
Hongfei Lin ◽  
...  

Author(s):  
Dongliang Li ◽  
Rong Chen ◽  
Xun Zhu ◽  
Qiang Liao ◽  
Dingding Ye ◽  
...  

Author(s):  
Ying Guan ◽  
Wenqi Li ◽  
Hui Gao ◽  
Liping Zhang ◽  
Liang Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document