Non-locality of the contact line in dynamic wetting phenomena

Author(s):  
Alex V. Lukyanov
2008 ◽  
Vol 138 (2) ◽  
pp. 101-120 ◽  
Author(s):  
Khellil Sefiane ◽  
Jennifer Skilling ◽  
Jamie MacGillivray

2020 ◽  
Vol 229 (10) ◽  
pp. 1945-1977 ◽  
Author(s):  
Yulii D. Shikhmurzaev

Abstract After a brief overview of the ‘moving contact-line problem’ as it emerged and evolved as a research topic, a ‘litmus test’ allowing one to assess adequacy of the mathematical models proposed as solutions to the problem is described. Its essence is in comparing the contact angle, an element inherent in every model, with what follows from a qualitative analysis of some simple flows. It is shown that, contrary to a widely held view, the dynamic contact angle is not a function of the contact-line speed as for different spontaneous spreading flows one has different paths in the contact angle-versus-speed plane. In particular, the dynamic contact angle can decrease as the contact-line speed increases. This completely undermines the search for the ‘right’ velocity-dependence of the dynamic contact angle, actual or apparent, as a direction of research. With a reference to an earlier publication, it is shown that, to date, the only mathematical model passing the ‘litmus test’ is the model of dynamic wetting as an interface formation process. The model, which was originated back in 1993, inscribes dynamic wetting into the general physical context as a particular case in a wide class of flows, which also includes coalescence, capillary breakup, free-surface cusping and some other flows, all sharing the same underlying physics. New challenges in the field of dynamic wetting are discussed.


Author(s):  
Gui Lu ◽  
Yuan-Yuan Duan ◽  
Xiao-Dong Wang

The dynamic wetting of water nano-droplet with evaporation on the heated gold substrate was examined using molecular dynamics simulation. Various substrate and droplet pre-heated temperatures were calculated to obtained different evaporating rates. Water molecules attachment-detachment details were traced near the contact line region to show the microscopic details and evidences for the spreading-evaporating droplet. The increasing substrate temperature greatly affected the dynamic wetting process, while the initial temperature of water droplet had very limited effects. The effects of free surface evaporation on wetting kinetics for both hydrophobic and hydrophilic substrates were examined. The radius versus time curves agree well with the Molecular kinetic theory (MKT) for spreading without evaporation and deviate from the MKT for the spreading with evaporation. The enhancement on wetting kinetics due to evaporation can be attributed to the reducing of liquid-vapor surface tension and the strengthening in water molecules transport in contact line region and bulk droplet.


2016 ◽  
Vol 789 ◽  
pp. 285-309 ◽  
Author(s):  
Chen-Yu Liu ◽  
Eric Vandre ◽  
Marcio S. Carvalho ◽  
Satish Kumar

The influence of insoluble surfactants on dynamic wetting failure during displacement of Newtonian fluids in a rectangular channel is studied in this work. A hydrodynamic model for steady Stokes flows of dilute surfactant solutions is developed and evaluated using three approaches: (i) a one-dimensional (1D) lubrication-type approach, (ii) a novel hybrid of a 1D description of the receding phase and a 2D description of the advancing phase, and (iii) an asymptotic theory of Cox (J. Fluid Mech., vol. 168, 1986b, pp. 195–220). Steady-state solution families in the form of macroscopic contact angles as a function of the capillary number are determined and limit points are identified. When air is the receding fluid, Marangoni stresses are found to increase the receding-phase pressure gradients near the contact line by thinning the air film without significantly changing the capillary-pressure gradients there. As a consequence, the limit points shift to lower capillary numbers and the onset of wetting failure is promoted. The model predictions are then used to interpret decades-old experimental observations concerning the influence of surfactants on air entrainment (Burley & Kennedy, Chem. Engng Sci., vol. 31, 1976, pp. 901–911). In addition to being a computationally efficient alternative for the rectangular geometries considered here, the hybrid modelling approach developed in this paper could also be applied to more complicated geometries where a thin air layer is present near a contact line.


2014 ◽  
Vol 2014.89 (0) ◽  
pp. _8-1_
Author(s):  
Shota IWAHATA ◽  
Kenji KATOH ◽  
Tatsuro WAKIMOTO ◽  
Takahiro ITO ◽  
Yasufumi YAMAMOTO

1994 ◽  
Vol 366 ◽  
Author(s):  
B. Frank ◽  
S. Garoff

ABSTRACTSurfactant self-assembly at the liquid-vapor, solid-liquid, and solid-vapor interfaces controls the wetting behavior of advancing surfactant solutions. While different surfactants exhibit different static and dynamic wetting properties, we show that these behaviors can be understood through an examination of microscopic structures driven by surfactant-surface interactions. We examine surfactant solutions exhibiting complete and partial static wetting as well as spreading by dendritic pattern formation and unsteady, stick-jump behavior. In each case, the observed behavior is related to the structure of the surfactant assemblies in the vicinity of the contact line.


2020 ◽  
Vol 229 (10) ◽  
pp. 1849-1865 ◽  
Author(s):  
Mathis Fricke ◽  
Dieter Bothe

Abstract The moving contact line paradox discussed in the famous paper by Huh and Scriven has lead to an extensive scientific discussion about singularities in continuum mechanical models of dynamic wetting in the framework of the two-phase Navier–Stokes equations. Since the no-slip condition introduces a non-integrable and therefore unphysical singularity into the model, various models to relax the singularity have been proposed. Many of the relaxation mechanisms still retain a weak (integrable) singularity, while other approaches look for completely regular solutions with finite curvature and pressure at the moving contact line. In particular, the model introduced recently in [A.V. Lukyanov, T. Pryer, Langmuir 33, 8582 (2017)] aims for regular solutions through modified boundary conditions. The present work applies the mathematical tool of compatibility analysis to continuum models of dynamic wetting. The basic idea is that the boundary conditions have to be compatible at the contact line in order to allow for regular solutions. Remarkably, the method allows to compute explicit expressions for the pressure and the curvature locally at the moving contact line for regular solutions to the model of Lukyanov and Pryer. It is found that solutions may still be singular for the latter model.


Sign in / Sign up

Export Citation Format

Share Document