A comparative study on the feasible use of recycled beverage and CRT funnel glass as fine aggregate in cement mortar

2012 ◽  
Vol 29-30 ◽  
pp. 46-52 ◽  
Author(s):  
Tung-Chai Ling ◽  
Chi-Sun Poon
2018 ◽  
Vol 192 ◽  
pp. 141-152 ◽  
Author(s):  
P. Priyadharshini ◽  
K. Ramamurthy ◽  
R.G. Robinson
Keyword(s):  

2017 ◽  
Vol 06 (01) ◽  
Author(s):  
Mambou Ngueyep Luc Leroy ◽  
Tchapga Gniamsi Guy Molay ◽  
Ndop Joseph ◽  
Fofe Meli Colince ◽  
Ndjaka Jean Marie Bienvenu

2018 ◽  
Vol 7 (4.2) ◽  
pp. 5
Author(s):  
Dr Lavanya Prabha.Sa ◽  
Dr Neelamegam ◽  
Vinodhini Sri.R

This paper presents the study to investigate the viability of using copper slag as fine aggregate in cement mortar. Two series of cement mortar mixtures were prepared with different proportion of copper slag at different workability. In the first series, various proportions of copper slag is substituted for sand ranging from 0% to 100% with constant workability. Second series consists of fully replaced copper slag for sand in the cement mortar, which was achieved by maintaining the same workability as that of the control mortar mixture from first series and a control mixture for this new workability with sand as fine aggregate. The strength of twelve trial cement mortar mixtures were tested. The results indicate high compressive strength upto 50% replacement of copper slag, after that the compressive strength decreases with increase in copper slag percentage in cement mortar. The copper slag content in the mortar adversely affected the compressive strength of the mortar mixtures as 4.2% and 21.1% improvement in the compressive strength of the cement mortar for 50% replacement compared and 100% replacement compared with the control mortar mixtures. The density of cement mortar increases with increase in copper slag. From these trial mixtures two optimized mixtures were selected and were used to cast the sandwich panels. This panels were tested for flexural behaviour and axial load compression behaviour. The behavior of sandwich panels were simulated using ANSYS and the results were compared with experimental results.   


2019 ◽  
Vol 801 ◽  
pp. 391-396
Author(s):  
Janardhan Prashanth ◽  
Harish Narayana ◽  
Ramji Prasad

In this paper comparative study on the compressive strength and permeability of pervious concrete with and without fine aggregate is done. Sand and LLDPE (Linear low density polythene) with varying percentages are used as fine aggregates. Sand is added in percentages of 5%, 10% and 15% of the coarse aggregate in all the mixes. LLDPE powder is added in the percentage of 5%, 10% and 15% of the coarse aggregate in all the mixes. With the addition of fine aggregate the compressive strength of the pervious concrete increases but permeability reduces. The results show that the pervious concrete with LLDPE powder there is a considerable increase in compressive strength as compared to no-fines mix and mix with sand as fine aggregate. The study recommends the use of eco-friendly pervious concrete with LLDPE powder as an alternative to the existing pavements with low volume traffic.


Sign in / Sign up

Export Citation Format

Share Document