Life cycle assessment of small-scale horizontal axis wind turbines in Taiwan

2017 ◽  
Vol 141 ◽  
pp. 492-501 ◽  
Author(s):  
Wei-Cheng Wang ◽  
Heng-Yi Teah
2022 ◽  
pp. 1-34
Author(s):  
Ojing Siram ◽  
Neha Kesharwani ◽  
Niranjan Sahoo ◽  
Ujjwal K. Saha

Abstract In recent times, the application of small-scale horizontal axis wind turbines (SHAWTs) has drawn interest in certain areas where the energy demand is minimal. These turbines, operating mostly at low Reynolds number (Re) and low tip speed ratio (λ) applications, can be used as stand-alone systems. The present study aims at the design, development, and testing of a series of SHAWT models. On the basis of aerodynamic characteristics, four SHAWT models viz., M1, M2, M3, and M4 composed of E216, SG6043, NACA63415, and NACA0012 airfoils, respectively have been developed. Initially, the rotors are designed through blade element momentum theory (BEMT), and their power coefficient have been evaluated. Thence, the developed rotors are tested in a low-speed wind tunnel to find their rotational frequency, power and power coefficient at design and off-design conditions. From BEMT analysis, M1 shows a maximum power coefficient (Cpmax) of 0.37 at λ = 2.5. The subsequent wind tunnel tests on M1, M2, M3, and M4 at 9 m/s show the Cpmax values to be 0.34, 0.30, 0.28, and 0.156, respectively. Thus, from the experiments, the M1 rotor is found to be favourable than the other three rotors, and its Cpmax value is found to be about 92% of BEMT prediction. Further, the effect of pitch angle (θp) on Cp of the model rotors is also examined, where M1 is found to produce a satisfactory performance within ±5° from the design pitch angle (θp, design).


Author(s):  
Keaton Mullenix ◽  
D. Keith Walters ◽  
Arturo Villegas ◽  
F. Javier Diez

Abstract Wind turbines are critically important in the quest to decrease global dependence on non-renewable energy sources. With the space to add 5M wind turbines, the United States is at the forefront of this transition. Horizontal axis wind turbines (HAWTs) have been studied numerically and experimentally at length. The vast majority of computational fluid dynamics (CFD) studies of HAWTs documented in the open literature have been carried out using two-dimensional simulations. Currently, the available three-dimensional simulations do not provide a comprehensive investigation of the accuracy of different options for modeling of fluid turbulence. In this paper four sets of CFD simulations are carried out using four different turbulence models that are commonly used for engineering level CFD analysis: SST-k-ω, Transition k-kL-ω, Standard k-ε, and Monotonically Integrated Large Eddy Simulation (MILES). These models were compared with experimental performance and coefficient of power results for a small-scale industrial wind turbine with inverse tip speed ratios (λ−1) in the range 0.072–0.144. They were further investigated to highlight the similarities and differences for the prediction of coefficient of pressure and skin friction coefficient. The results showed that no singular model, of the four investigated, was able to consistently predict the power performance with a high degree of accuracy when compared to the experimental results. The models also exhibited both similarities and key differences for the other aspects of flow physics. The results presented in this study highlight the critical role that turbulence modeling plays in the overall accuracy of a CFD simulation, and indicate that end users should be well aware of the uncertainties that arise in CFD results for wind turbine analysis, even when other sources of numerical error have been carefully minimized.


2022 ◽  
Vol 12 (1) ◽  
pp. 60
Author(s):  
Rabia Hassan ◽  
Muhammad Mahboob ◽  
Zubair Ahmed Jan ◽  
Muhammad Ashiq

The world is increasingly experiencing unanticipated catastrophic events because of the impact of greenhouse gasses. The two major issues with the conventional energy system are unsustainability and global warming, which are extremely harmful for the climate. The core objective of this study is a compilation of the findings related to a life cycle assessment of horizontal axis wind turbines in regard to sustainable development. Sustainability aspects and concerns have been studied and reported in terms of the life cycle of wind energy technology. This article focused on energy consumed during the life of the 2.0 MW wind turbine, mostly in the production of primary materials, processes, and maintenance-related transport phase. The turbine’s overall energy produced 1,750,000 kWh throughout a 20-year life. Over a 20year lifespan, the overall energy produced by the turbine is approximately 32% more than the energy needed to construct, and the destination for the turbine materials is a landfill at the end of the turbine’s life. For a 40% wind turbine power ratio, with the wind turbine materials delivered to landfill at the end of the turbine’s life, the electricity payback period is around 10 months, and for recycled materials it is 6 months. The comparison is also done for the wind turbine materials which are sent to landfill with and without recycling.


Sign in / Sign up

Export Citation Format

Share Document