Will rapid urban expansion in the drylands of northern China continue: A scenario analysis based on the Land Use Scenario Dynamics-urban model and the Shared Socioeconomic Pathways

2017 ◽  
Vol 165 ◽  
pp. 57-69 ◽  
Author(s):  
Chunyang He ◽  
Jingwei Li ◽  
Xiaoling Zhang ◽  
Zhifeng Liu ◽  
Da Zhang
2020 ◽  
Vol 12 (6) ◽  
pp. 1427-1449
Author(s):  
Danil Viktorovich Ilyasov ◽  
A. G. Molchanov ◽  
Mikhail Vladimirovich Glagolev ◽  
Gennady Gennadievich Suvorov ◽  
Andrey Arturovich Sirin

Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3405
Author(s):  
Zihang Fang ◽  
Shixiong Song ◽  
Chunyang He ◽  
Zhifeng Liu ◽  
Tao Qi ◽  
...  

Effective evaluations of the future urban expansion impacts (UEI) on surface runoff in alpine basins are full of challenges due to the lack of reliable methods. Our objective was to provide a new approach by coupling the Land Use Scenario Dynamics-urban (LUSD-urban) and Soil Conservation Service-Curve Number (SCS-CN) models to estimate the future UEI on surface runoff. Taking the Qinghaihu-Huangshui basin (QHB) in the Tibetan Plateau, China, as an example, we first applied the SCS-CN model to quantify the surface runoff in 2000 and 2018 and analyzed the changes in surface runoff. Next, we applied the LUSD-urban model to simulate urban expansion under five localized shared socioeconomic pathways (SSPs) from 2018 to 2050. Finally, we assessed the UEI on surface runoff in the QHB from 2018 to 2050. We found that coupling the LUSD-urban and SCS-CN models could effectually evaluate the future UEI on surface runoff. Compared with the combination of the Future Land Use Simulation (FLUS) and SCS-CN models, our method reduced the absolute evaluation errors from 3.40% and 11.78% to 0.18% and 4.23%, respectively. In addition, the results showed that future urban expansion will have severe impacts on surface runoff in the valley region. For example, as a result of urban expansion, the surface runoff in the Huangzhong, Xining, and Datong catchments will increase by 4.90–9.01%, 4.25–7.36%, and 2.33–3.95%, respectively. Therefore, we believe that the coupled model can be utilized to evaluate the future UEI on surface runoff in alpine basins. In addition, the local government should pay attention to flood risk prevention, especially in the valley region, and adopt reasonable urban planning with soft and hard adaptation measures to promote the sustainable development of alpine basins under rapid urban expansion.


Land ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 688
Author(s):  
Xinhao Pan ◽  
Zichen Wang ◽  
Miao Huang ◽  
Zhifeng Liu

Accurately simulating urban expansion is of great significance for promoting sustainable urban development. The calculation of neighborhood effects is an important factor that affects the accuracy of urban expansion models. The purpose of this study is to improve the calculation of neighborhood effects in an urban expansion model, i.e., the land-use scenario dynamics-urban (LUSD-urban) model, by integrating the trend-adjusted neighborhood algorithm and the automatic rule detection procedure. Taking eight sample cities in China as examples, we evaluated the accuracies of the original model and the improved model. We found that the improved model can increase the accuracy of simulated urban expansion in terms of both the degree of spatial matching and the similarity of urban form. The increase of accuracy can be attributed to such integration comprehensively considers the effects of historical urban expansion trends and the influences of neighborhoods at different scales. Therefore, the improved model in this study can be widely used to simulate the process of urban expansion in different regions.


Author(s):  
X. Chen ◽  
C. Tian ◽  
X. Meng ◽  
Q. Xu ◽  
G. Cui ◽  
...  

Abstract. It is increasingly recognized that the land-use change, especially urbanization has influenced hydrological attributes intensely. Flood characteristics variation could likewise increase flood risks and pose higher demand on water management. The paper aims to evaluate temporal and spatial processes of urbanization affecting flood events at catchment level. The study sites were Xiaoqinhe catchment and its sub-catchments, a part of lower Yellow river basin in northern China. Historic cities Jinan and Zibo in the area have experienced dramatic urban expansion in recent decades, about 5% growth of urban build-up area annually from 1990s to 2010s, and also pressed alarm for increasing flood disasters. In the paper, a HEC-HMS model was set up to simulate flood processes for different land-use scenarios. The possible effects of urbanization on flood characteristics were checked in study catchment and its sub-catchments.


Sign in / Sign up

Export Citation Format

Share Document