scholarly journals Heating energy saving potential from building envelope design and operation optimization in residential buildings: A case study in northern China

2018 ◽  
Vol 174 ◽  
pp. 413-423 ◽  
Author(s):  
Zhihua Zhou ◽  
Chendong Wang ◽  
Xiuhao Sun ◽  
Feng Gao ◽  
Wei Feng ◽  
...  
2011 ◽  
Vol 374-377 ◽  
pp. 199-203
Author(s):  
Ting Ting Li ◽  
Li Hua Zhao

The rapid development of rural economy has led the massive construction of rural dwellings, while the energy consumption is increasing correspondingly. A field study was carried out in local nine villages of Pearl River Delta, aims to look into actual conditions of rural residential buildings and explore the energy-saving potential, a detailed questionnaire survey was conducted as well to investigate the construction of rural dwellings and the influencing factors in design. The results of this investigation, which focused on dwellings built by residents, revealed that the built form of dwellings is generally Low-rise house, the average storey height ranges from 3.6 to 4 meters. The primary building envelope is 200 cm clay brick wall construction, and not insulated flat roofing, moreover, the high energy consumption of increasing multistorey dwellings has drawn attention.


2017 ◽  
Vol 05 (04) ◽  
pp. 1750022
Author(s):  
Wei JIANG ◽  
Xuhui ZHANG

Despite China's significant progress in energy saving renovations, during the past 10 years, problems about inefficiencies remain. In the Netherlands, the energy labeling system (ELS) effectively linked policy objectives and market forces, combined with the stepped tariffs aimed at the performance of energy-saving renovation, generating a virtuous cycle of housing energy efficiency upgrading. China may draw the experience from Netherlands. In this regard, the authors probe the market effect and operating mechanism of the Dutch ELS and the stepped tariffs. The theory of multi-level governance (MLG) is introduced to the filed investigations both in China and the Netherlands. Based on the group-interviews and depth-interviews with the officials in related agencies and the residents of retrofitting housing, the authors obtained first-hand information to ensure a close case study on Netherlands' housing ELS and its implementation, in order to provide some enlightenment for China's existing housing renovation and low carbon development.


Author(s):  
N.Sujith Prasanna ◽  
Dr.J.Nagesh Kumar

Energy cost is significant in many of the manufacturing activities. The efficiency of energy use is quiet low as there are substantial visible and hidden losses. Visible losses can be easily identified and corrective action can be taken. However hidden and indirect losses form a sizeable portion of the losses. Identifying these losses is not easy and requires an integrated approach which includes thorough study of process, operations and their interactions with energy use. Industries across sectors have implemented lean management principles which target various wastes occurring in the plant. This paper discusses case studies which highlight the exploitation of lean tools as a means for unearthing hidden energy saving potential that often go unnoticed. In addition to the energy savings which results in improved profits and competitiveness, the approach also aids the industry to pursue a path of sustainable manufacturing.


2018 ◽  
Vol 164 ◽  
pp. 01007
Author(s):  
Dany Perwita Sari ◽  
Yun-shang Chiou

There are some architectural factors in the energy saving design of residential houses in Taiwan. In addition, in rural area, window glazing is a key factor to reducing electricity. For these purposes, a simulation model of exterior shading has been done in this study. Various types of shading devices have been analysed and compared in terms of energy savings. Simulation analysis by DesignBuilder reveals that shading devices has substantial impact to minimizing energy consumption. The results derived in this paper could provide useful suggestions for the shading design of residential buildings at rural area in Taiwan.


2020 ◽  
Vol 10 (12) ◽  
pp. 4336
Author(s):  
Yue Hu ◽  
Per Kvols Heiselberg ◽  
Tine Steen Larsen

A ventilated window system enhanced by phase change material (PCM) has been developed, and its energy-saving potential examined in previous works. In this paper, the ventilation control strategies are further developed, to improve the energy-saving potential of the PCM energy storage. The influence of ventilation airflow rate on the energy-saving potential of the PCM storage is firstly studied based on an EnergyPlus model of a sustainable low energy house located in New York. It shows that in summer, the optimized ventilation airflow rate is 300 m3/h. The energy-saving of utilizing a ventilated window with PCM energy storage is 10.1% compared to using a stand-alone ventilated window, and 12.0% compared to using a standard window. In winter, the optimized ventilation airflow rate is 102 m3/h. The energy-saving of utilizing a ventilated window with PCM energy storage is 26.6% compared to using a stand-alone ventilated window, and 32.8% compared to using a standard window. Based on the optimized ventilation airflow rate, a demand control ventilation strategy, which personalizes the air supply and heat pump setting based on the demand of each room, is proposed and its energy-saving potential examined. The results show that the energy savings of using demand control compared to a constant ventilation airflow rate in the house is 14.7% in summer and 30.4% in winter.


Sign in / Sign up

Export Citation Format

Share Document