scholarly journals Sensitivity analysis of energy inputs in crop production using artificial neural networks

2018 ◽  
Vol 197 ◽  
pp. 992-998 ◽  
Author(s):  
Alireza Khoshroo ◽  
Ali Emrouznejad ◽  
Ahmadreza Ghaffarizadeh ◽  
Mehdi Kasraei ◽  
Mahmoud Omid
2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Ehsan Ardjmand ◽  
David F. Millie ◽  
Iman Ghalehkhondabi ◽  
William A. Young II ◽  
Gary R. Weckman

Artificial neural networks (ANNs) are powerful empirical approaches used to model databases with a high degree of accuracy. Despite their recognition as universal approximators, many practitioners are skeptical about adopting their routine usage due to lack of model transparency. To improve the clarity of model prediction and correct the apparent lack of comprehension, researchers have utilized a variety of methodologies to extract the underlying variable relationships within ANNs, such as sensitivity analysis (SA). The theoretical basis of local SA (that predictors are independent and inputs other than variable of interest remain “fixed” at predefined values) is challenged in global SA, where, in addition to altering the attribute of interest, the remaining predictors are varied concurrently across their respective ranges. Here, a regression-based global methodology, state-based sensitivity analysis (SBSA), is proposed for measuring the importance of predictor variables upon a modeled response within ANNs. SBSA was applied to network models of a synthetic database having a defined structure and exhibiting multicollinearity. SBSA achieved the most accurate portrayal of predictor-response relationships (compared to local SA and Connected Weights Analysis), closely approximating the actual variability of the modeled system. From this, it is anticipated that skepticisms concerning the delineation of predictor influences and their uncertainty domains upon a modeled output within ANNs will be curtailed.


Author(s):  
Boyi Liang ◽  
Hongyan Liu ◽  
Timothy A Quine ◽  
Xiaoqiu Chen ◽  
Paul D Hallett ◽  
...  

The area of karst terrain in China covers 3.63×106 km2, with more than 40% in the southwestern region over the Guizhou Plateau. Karst comprises exposed carbonate bedrock over approximately 1.30×106 km2 of this area, which suffers from soil degradation and poor crop yield. This paper aims to gain a better understanding of the environmental controls on crop yield in order to enable more sustainable use of natural resources for food production and development. More precisely, four kinds of artificial neural network were used to analyse and simulate the spatial patterns of crop yield for seven crop species grown in Guizhou Province, exploring the relationships with meteorological, soil, irrigation and fertilization factors. The results of spatial classification showed that most regions of high-level crop yield per area and total crop yield are located in the central-north area of Guizhou. Moreover, the three artificial neural networks used to simulate the spatial patterns of crop yield all demonstrated a good correlation coefficient between simulated and true yield. However, the Back Propagation network had the best performance based on both accuracy and runtime. Among the 13 influencing factors investigated, temperature (16.4%), radiation (15.3%), soil moisture (13.5%), fertilization of N (13.5%) and P (12.4%) had the largest contribution to crop yield spatial distribution. These results suggest that neural networks have potential application in identifying environmental controls on crop yield and in modelling spatial patterns of crop yield, which could enable local stakeholders to realize sustainable development and crop production goals.


2003 ◽  
Vol 42 (03) ◽  
pp. 287-296 ◽  
Author(s):  
B. S. Gerber ◽  
T. G. Tape ◽  
R. S. Wigton ◽  
P. S. Heckerling

Summary Objectives: Artificial neural networks have proved to be accurate predictive instruments in several medical domains, but have been criticized for failing to specify the information upon which their predictions are based. We used methods of relevance analysis and sensitivity analysis to determine the most important predictor variables for a validated neural network for community-acquired pneumonia. Methods: We studied a feed-forward, back-propagation neural network trained to predict pneumonia among patients presenting to an emergency department with fever or respiratory complaints. We used the methods of full retraining, weight elimination, constant substitution, linear substitution, and data permutation to identify a consensus set of important demographic, symptom, sign, and comorbidity predictors that influenced network output for pneumonia. We compared predictors identified by these methods to those identified by a weight propagation analysis based on the matrices of the network, and by logistic regression. Results: Predictors identified by these methods were clinically plausible, and were concordant with those identified by weight analysis, and by logistic regression using the same data. The methods were highly correlated in network error, and led to variable sets with errors below bootstrap 95% confidence intervals for networks with similar numbers of inputs. Scores for variable relevance tended to be higher with methods that precluded network retraining (weight elimination) or that permuted variable values (data permutation), compared with methods that permitted retraining (full retraining) or that approximated its effects (constant and linear substitution). Conclusion: Methods of relevance analysis and sensitivity analysis are useful for identifying important predictor variables used by artificial neural networks.


Sign in / Sign up

Export Citation Format

Share Document