scholarly journals Hydrogen production from industrial wastewaters: An integrated reverse electrodialysis - Water electrolysis energy system

2018 ◽  
Vol 203 ◽  
pp. 418-426 ◽  
Author(s):  
Ramato Ashu Tufa ◽  
Jaromír Hnát ◽  
Michal Němeček ◽  
Roman Kodým ◽  
Efrem Curcio ◽  
...  
2019 ◽  
Vol 14 (3) ◽  
pp. 645-651 ◽  
Author(s):  
Mitsuru Higa ◽  
Takeshi Watanabe ◽  
Masahiro Yasukawa ◽  
Nobutaka Endo ◽  
Yuriko Kakihana ◽  
...  

Abstract A pilot-scale sustainable hydrogen production system using reverse electrodialysis (RED) technology was launched. The system is based on direct conversion of salinity gradient energy (SGE) between seawater (SW) and sewage treated water (STW) to hydrogen production by water electrolysis. The hydrogen production rate was almost the same as the theoretical value. This indicates that the RED hydrogen production system can convert SGE between SW and STW to hydrogen energy at high current efficiency.


2021 ◽  
Vol 1034 (1) ◽  
pp. 012075
Author(s):  
Purnami ◽  
ING. Wardana ◽  
Sudjito ◽  
Denny Widhiyanuriyawan ◽  
Nurkholis Hamidi

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Shan Wang ◽  
Aolin Lu ◽  
Chuan-Jian Zhong

AbstractAs a promising substitute for fossil fuels, hydrogen has emerged as a clean and renewable energy. A key challenge is the efficient production of hydrogen to meet the commercial-scale demand of hydrogen. Water splitting electrolysis is a promising pathway to achieve the efficient hydrogen production in terms of energy conversion and storage in which catalysis or electrocatalysis plays a critical role. The development of active, stable, and low-cost catalysts or electrocatalysts is an essential prerequisite for achieving the desired electrocatalytic hydrogen production from water splitting for practical use, which constitutes the central focus of this review. It will start with an introduction of the water splitting performance evaluation of various electrocatalysts in terms of activity, stability, and efficiency. This will be followed by outlining current knowledge on the two half-cell reactions, hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), in terms of reaction mechanisms in alkaline and acidic media. Recent advances in the design and preparation of nanostructured noble-metal and non-noble metal-based electrocatalysts will be discussed. New strategies and insights in exploring the synergistic structure, morphology, composition, and active sites of the nanostructured electrocatalysts for increasing the electrocatalytic activity and stability in HER and OER will be highlighted. Finally, future challenges and perspectives in the design of active and robust electrocatalysts for HER and OER towards efficient production of hydrogen from water splitting electrolysis will also be outlined.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3437
Author(s):  
Andreas Rosenstiel ◽  
Nathalie Monnerie ◽  
Jürgen Dersch ◽  
Martin Roeb ◽  
Robert Pitz-Paal ◽  
...  

Global trade of green hydrogen will probably become a vital factor in reaching climate neutrality. The sunbelt of the Earth has a great potential for large-scale hydrogen production. One promising pathway to solar hydrogen is to use economically priced electricity from photovoltaics (PV) for electrochemical water splitting. However, storing electricity with batteries is still expensive and without storage only a small operating capacity of electrolyser systems can be reached. Combining PV with concentrated solar power (CSP) and thermal energy storage (TES) seems a good pathway to reach more electrolyser full load hours and thereby lower levelized costs of hydrogen (LCOH). This work introduces an energy system model for finding cost-optimal designs of such PV/CSP hybrid hydrogen production plants based on a global optimization algorithm. The model includes an operational strategy which improves the interplay between PV and CSP part, allowing also to store PV surplus electricity as heat. An exemplary study for stand-alone hydrogen production with an alkaline electrolyser (AEL) system is carried out. Three different locations with different solar resources are considered, regarding the total installed costs (TIC) to obtain realistic LCOH values. The study shows that a combination of PV and CSP is an auspicious concept for large-scale solar hydrogen production, leading to lower costs than using one of the technologies on its own. For today’s PV and CSP costs, minimum levelized costs of hydrogen of 4.04 USD/kg were determined for a plant located in Ouarzazate (Morocco). Considering the foreseen decrease in PV and CSP costs until 2030, cuts the LCOH to 3.09 USD/kg while still a combination of PV and CSP is the most economic system.


2012 ◽  
Vol 100 (2) ◽  
pp. 410-426 ◽  
Author(s):  
Alfredo Ursua ◽  
Luis M. Gandia ◽  
Pablo Sanchis

Author(s):  
Xuejun Zhai ◽  
Qingping Yu ◽  
Guishan Liu ◽  
Junlu Bi ◽  
Yu Zhang ◽  
...  

Hydrogen evolution reaction (HER) based on water electrolysis is promising for renewable hydrogen production. Limited by sluggish anodic oxygen evolution reaction (OER), rational fabrication of efficient catalyst for HER coupled...


Sign in / Sign up

Export Citation Format

Share Document