treated water
Recently Published Documents


TOTAL DOCUMENTS

736
(FIVE YEARS 235)

H-INDEX

33
(FIVE YEARS 7)

Medicines ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 4
Author(s):  
Osaro Ogie Enehizena ◽  
Mathias A. Emokpae

Drinking water can be a potential source of toxic metals, which are a known leading cause of infertility in men. This study determines the concentrations of lead (Pb), cadmium (Cd), zinc (Zn), copper (Cu) in drinking water (borehole, hand-dug well and treated water) and sex hormone levels (serum follicle stimulating hormone (FSH), luteinizing hormone (LH), prolactin (PROL), estradiol (E2), progesterone (PROG), and testosterone (T) in males who drink water mainly from these sources. The concentrations of Cd, and Pb in hand-dug wells were higher than the permissible limit recommended by the World Health Organization (WHO) while Zn and Cu were within the permissible levels in drinking water. Blood Cd and Pb levels were significantly higher (p < 0.001) among subjects who consumed hand-dug and borehole water than treated water, while serum Zn was significantly lower (p < 0.001) in hand-dug well and borehole water consumers than in control subjects. Also, serum FSH (p < 0.001), LH (p < 0.001), E2 (p < 0.002), PROG (p < 0.04) and T (p < 0.001) were significantly lower among hand-dug well and borehole water consumers than controls, while PROL (p < 0.001) was significantly higher in hand-dug well and borehole water consumers than controls. Blood Cd and Pb levels were significantly higher (p < 0.001) in hand-dug well water consumers than borehole water consumers. The consumption of water from hand-dug wells may have adverse reproductive sequelae among consumers.


Author(s):  
Yogendra Singh Solanki ◽  
Madhu Agarwal ◽  
A. B. Gupta

Abstract In the present study coagulation process was used as pretreatment for the RO membrane with turbid raw water collected from Bisalpur Dam, Rajasthan, India. To optimize coagulation performance, three kinds of coagulants, namely, Alum (commercially available), synthesized inorganic polymeric coagulant-medium basicity (IPC-M), and inorganic polymeric coagulant-ultra high basicity (IPC-UH) were examined for turbidity removal with varying operating parameters. It was observed that in the optimum pH range of 6–7, the IPC-UH resulted as the best performing coagulant with 0.99 mg/L equivalent Al2O3 dose revealing 2 NTU residual turbidity and residual aluminium of 0.001 mg/L. Moreover, Langelier saturation index and Ryznar stability index values were evaluated at optimum conditions of all the three coagulants proclaiming negligible scaling potential. Furthermore, the coagulant-treated water (100 L) was fed to the RO membrane, and the performance was noted in terms of flux, pressure, and TDS. It was observed that IPC-UH has the lowest reduction in permeate flux of 0.78 L/min/m2 compared to commercially available coagulant alum (0.90 L/min/m2). Also, the increased feed pressure was observed for all the coagulants treated water with the lowest value of 2.3 kg/cm2 for IPC-UH, which was 2.5 kg/cm2 for Alum (commercially available coagulant). Henceforth, integration of coagulation before the RO system resulted in effective pretreatment of turbid water with very minute scaling.


2021 ◽  
Vol 82 (1) ◽  
Author(s):  
Hauwa Mohammed Mustafa ◽  
Dr Gasim Hayder

Phytoremediation is an eco-friendly and cost-effective biotechnological method of wastewater treatment that involves the use of plants. In this research work, the potentials of Pistia stratiotes and Lemna minor aquatic plants in treatment of wastewater was examined. The two plants were cultivated in the wastewater sample for a period of 10 days. Water quality parameters (turbidity, chemical oxygen demand (COD), phosphate, ammoniacal nitrogen and nitrate) tests was subjected on the untreated (influent) and treated water (effluent) samples at a detention time of 24 hours. The outcome of the analysis demonstrates that P. stratiotes effluent achieved a reduction efficiency of up to 91.9%, 68%, 79.6%, and 71% for turbidity, phosphate, ammoniacal nitrogen and nitrate, respectively. Whereas for L. minor treated water samples, the highest reduction efficiency for turbidity, COD, phosphate, ammoniacal nitrogen and nitrate was found to be 87.2%, 46%, 48.7%, 83% and 56%, respectively. Hence, the overall outcome obtained indicate that P. stratiotes performed better in improving the quality of domestic wastewater compared to L. minor plants.


2021 ◽  
pp. 2110591
Author(s):  
Haeyeon Lee ◽  
Minho Jin ◽  
Hyun‐Jae Na ◽  
Changik Im ◽  
Jae Hak Lee ◽  
...  

2021 ◽  
Vol 8 (12) ◽  
pp. 711-719
Author(s):  
Enehizena Osaro Ogie ◽  
Fidelis Ohiremen Oyakhire ◽  
Egho Eseoghene Valentine ◽  
Cedric Odaro ◽  
Joy Akpesiri Egho ◽  
...  

Objective: Drinking water contaminated with toxic metals can be a leading cause of infertility in males. The aim of this study was to determine the levels of some toxic metals and trace elements in drinking water and reproductive hormone levels in males who drink water from these sources in Sabongida-Ora , Edo State, Nigeria. Material and Methods: A total of 90 subjects consisting of 30 subjects who drink borehole water, 30 subjects who drink water from hand-dug well, and 30 subjects who drink table water, aged between 18 and 45 years, were recruited for this study. Serum reproductive hormones were analyzed using ELISA method. Blood lead, cadmium, serum zinc, and copper were analyzed using atomic absorption spectroscopy (AAS). The data obtained were analyzed using SPSS version 23.0. Results: Blood Cd and Pb levels were significantly higher (P<0.05) in hand-dug, borehole and treated water consumers while serum Zn level was significantly lower P<0.05) in hand-dug well and borehole water consumers than treated table water consumers. The serum Cu level was not significantly different between the groups.  The reproductive hormones were significantly lower among hand-dug well and borehole water consumers than treated table water consumers (p<0.05), while PROL(P<0.05) was significantly higher among hand-dug well, borehole water consumers than treated water consumers. Serum PROL correlated positively with Pb (r=0.443; P<0.05) and negatively with serum Zn (r=-0.404; P<0.05) while T correlated positively (r=0.542; P<0.005) with Zn. Similarly, FSH correlated negatively with Pb (r=-0.398; P<0.05) and positively with Zn (r=0.422;P<0.05), while LH correlated inversely with Cd (r=-0.622;P<0.05) and positively with Zn (r=0.745; P<0.05). Expectedly, Cd and Pb were higher while Cu and Zn were lower in hand-dug well water consumers than borehole water consumers. Conclusion: Water consumption from hand-dug wells may have adverse reproductive sequelae among consumers.


Author(s):  
Atul Maldhure ◽  
Gajanan Khadse ◽  
Pawan Labhasewar

Abstract Polyaluminium chloride (PAC) with different basicity is used as a coagulant in most drinking water treatment plants (WTP). The aluminium concentration in PAC and its hydrolysis mechanism varied with the basicity of PAC. Incremental addition of PAC changes various Physico-chemical properties and turbidity removal mechanisms in water. Water treatment plants use the PAC concentration beyond its optimum dose without considering other aspects, including residual aluminium concentration. In the present work, the effect of high and medium basicity of PAC on different Physico-chemical properties like pH, zeta potential, and residual aluminium concentration of water was investigated. The pH of treated water decreases with the incremental addition of PAC, and an increase in zeta potential and residual aluminium concentration in treated water was evidenced. The change in pH after PAC addition is responsible for deciding the coagulation mechanism and efficiency of the coagulation process. pH reduction is comparatively more in high basicity PAC than medium basicity. PAC hydrolysis mechanism is controlled by the zeta potential of water and can be used as an alternative method to decide the optimum coagulant dose. The performance of clariflocculator and pulsator-based WTP was also evaluated for raw water from the same source. To reduce down the turbidity below the acceptable level, the coagulant requirement for clariflocculator based WTP is comparatively less than pulsator based WTP. The floc blanket in the pulsator gets disturbed with a slight change in the coagulant chemistry and quantity.


2021 ◽  
Vol 9 ◽  
Author(s):  
Muntjeer Ali ◽  
Abdulaziz Ibrahim Almohana ◽  
Abdulrhman Fahmi Alali ◽  
Mohab Amin Kamal ◽  
Abbas Khursheed ◽  
...  

The stringency in effluent discharge and reuse standards has made it extremely expensive to discharge the effluents safely or reuse them. Therefore, existing wastewater treatment plants should be evaluated and improved or augmented. With this aim, five existing common effluent treatment plants (CETPs) in North India were evaluated, including: the State infrastructure Development Corporation Uttrakhand Limited (SIDCUL) Haridwar, which processes 4.5 Million Liters per day (MLD); the Industrial Model Township (IMT) Manesar Gurgaon, 55 MLD (comprising two streams of 25 and 30 MLD each); the Lawrence Road Industrial Area (LRIA), Delhi, 12MLD (12MLD LRIA); Mayapuri Industrial Area (MIA), Delhi, 12MLD; and the Integrated Industrial Estate (IIE) SIDCUL Pantnagar, 4.0 MLD. These plants were designed to produce treated effluent for non-potable reuse. Results showed that the integrated efficiency (IEa) of all CETPs was 10–20% larger than standard integrated efficiency (IEs), indicating the suitability of the technology, except for 12MLD at MIA CETP where the IEa was 20% lower than IEs, due to the absence of any biological unit in the process. Combined post-treatment of secondary effluent by coagulation, Ultrafiltration (UF), followed by ozonation for CETP SIDCUL Haridwar, was also conducted for its non-potable water reuse. This process was able to reduce Biochemical Oxygen Demand (BOD) by 77%, Chemical Oxygen Demand (COD) by 76%, turbidity by 96%, and Total Suspended Solids (TSS) by 100%. All these parameters confirmed the effluent standards for non-potable reuse. The color was reduced to 4.0 from 42.0 Pt-Co units by the exposure ozone concentration of 8.3 mg/L for up to 4.0 min on the treated water from SIDCUL CETP, which reduced the color by 90% and complied with reuse standards. Hence Combined post treatment by coagulation, UF followed Ozonation of secondary treated effluent could be a better option for the potable reuse of treated water in various domestic and industrial applications.


2021 ◽  
Author(s):  
Robert Zagitov ◽  
Jaisankar Subramanian ◽  
Srinivasa Rao Gopisetty ◽  
Avinash Kumar ◽  
Vinay Mathur ◽  
...  

Abstract Severe fouling of crude oil and produced water treatment equipment of Mangala Processing Terminal (MPT) with elastic deposits has been observed after EOR polymer breaking through to the producing wells. Fouling by polymer containing solids caused the system bottlenecking impacting on crude production rates and deterioration of water quality for injection due to increase of total solids loading. The objective of the study included developing the water treatment technology for removing the returned polymer, developing the pilot run for implementation of the technology and scaling up the process if the pilot shows success. Crude processed at MPT is produced from Mangala, Bhagyam and Aishwarya fields which are located at the north-west part of India. Full field polymer flooding has been implemented in the Mangala field from 2015. Fouling of downhole and topside equipment with elastic deposits has been reported soon after polymer breakthrough the same year. For reducing the fouling potential and solids loading, the concept of removing the returned polymer from produced water has been considered as beneficial. Removal of polymer through the chemical coagulation was considered for developing. Extensive laboratory and bench testing have been carried out. Based on the laboratory results, the pilot was developed and carried out on the flotation equipment available at MPT. In the laboratory and bench test for polymer coagulation, over 70% polymer removal was achieved with non-sticky flocks and minimal sludge. The tests also demonstrated reduced suspended solids, residual oil and filterability improvement of treated water. The pilot run confirmed effectiveness of the chemical coagulation process to remove polymer. Polymer removal &gt; 70% was observed during the pilot. Oil removal from produced water at 60-80% was seen. Cloud point of polymer remaining in water increased from 60°C to &gt; 110°C indicating on the significant potential reduction of remaining polymer to precipitate from treated water. The pilot results demonstrated on the applicability of the technology of chemical polymer removal at MPT and will be used for scaling up the treatment facilities.


2021 ◽  
Author(s):  
Jasbindra Singh ◽  
Mustafa Lawati ◽  
Abdulkareem Hindawi ◽  
Mohammed Harthi ◽  
Abdel Samiee Rady ◽  
...  

Abstract This paper describes the utilization of produced and treated formation water for planting trees and growing algae in large ponds; in a massive scale in South Oman. A detailed study has been carried out to assess the injection requirements for pressure maintenance in the producing reservoir and using the remaining excess pot-treated water for farming of the palm trees. The produced water has been used as disposal in formations deeper than the producing horizons in the past. The produced water was separated in a processing station that received gross production from a number of fields in South Oman. This water was disposed in the aquifer underlying a producing reservoir that has experienced pressure maintenance due to this disposal. The impact of this excess water disposal on the aquifer was studied to evaluate the risk of breaching cap rock integrity. The risk was not significant but to ensure "no damage to the environment and people" it was decided to reduce or optimize injection rates to maintain the reservoir pressure safeguarding reserves. In addition, the disposal of the water required significant amount of power equivalent to emitting significant amount of CO2 annually just for water disposal. The study was carried out using simple material balance methods to predict the pressure behaviour given an injection profile. The recommendations from the study have already been implemented to convert the deep-water disposal to injection in the aquifer. This has been achieved by the integration of number of interfaces from sub-surface to field operations. All the pieces are in place to take it the next level of execution that is to treat the water at surface for oil removal, hence rendering the water at acceptable quality levels for tree plantation and algae ponds. The project also aims in a future second phase to further treat the water to higher specifications allowing the use of it for agricultural purposes. This would introduce a commercial farm that will depend on this source of water. This would be a novel concept in South Oman where the treated water will be used for farming solving multiple issues at multiple levels namely helping the business achieve its objective of sustained oil production, helping local communities with employment via farming and helping the organization care for the environment by reducing carbon footprints.


Author(s):  
Nuhu Amin ◽  
Mahbubur Rahman ◽  
Mahbub-Ul Alam ◽  
Abul Kasham Shoab ◽  
Md. Kawsar Alome ◽  
...  

Chlorination of shallow tubewell water is challenging due to various iron concentrations. A mixed-method, small-scale before-and-after field trial assessed the accuracy and consistency of an automated chlorinator, Zimba, in Rohingya camp housing, Cox’s Bazar. From August–September 2018, two shallow tubewells (iron concentration = 6.5 mg/L and 1.5 mg/L) were selected and 20 households were randomly enrolled to participate in household surveys and water testing. The field-team tested pre-and post-treated tubewell and household stored water for iron, free and total chlorine, and E. coli. A sub-set of households (n = 10) also received safe storage containers (5 L jerry cans). Overall mean iron concentrations were 5.8 mg/L in Zimba water, 1.9 mg/L in household storage containers, and 2.8 mg/L in the project-provided safe storage containers. At baseline, 0% samples at source and 60% samples stored in household vessels were contaminated with E. coli (mean log10 = 0.62 MPN/100 mL). After treatment, all water samples collected from source and project-provided safe storage containers were free from E. coli, but 41% of post-treated water stored in the household was contaminated with E. coli. E. coli concentrations were significantly lower in the project-provided safe storage containers (log10 mean difference = 0.92 MPN, 95% CI = 0.59–1.14) compared with baseline and post-treated water stored in household vessels (difference = 0.57 MPN, 95% CI = 0.32–0.83). Zimba is a potential water treatment technology for groundwater extracted through tubewells with different iron concentrations in humanitarian settings.


Sign in / Sign up

Export Citation Format

Share Document