The effect of a semi-permeable membrane-covered composting system on greenhouse gas and ammonia emissions in the Tibetan Plateau

2018 ◽  
Vol 204 ◽  
pp. 778-787 ◽  
Author(s):  
Xiaoxi Sun ◽  
Shuangshuang Ma ◽  
Lujia Han ◽  
Renquan Li ◽  
Uwe Schlick ◽  
...  
2018 ◽  
Vol 10 (12) ◽  
pp. 4454
Author(s):  
Guangshuai Wang ◽  
Yueping Liang ◽  
Fei Ren ◽  
Xiaoxia Yang ◽  
Zhaorong Mi ◽  
...  

The cycle of key nutrient elements nitrogen (N) and phosphorus (P) has been massively altered by anthropogenic activities. Little is known about the impacts on greenhouse gas (GHG) emission of the large nutrient additions occurring in the alpine grasslands of the Tibetan Plateau. We investigated soil surface emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) under control, N, P and combined nitrogen and phosphorus (NP) additions from July 2011 to September 2012. Compared to the control, CO2 flux significantly increased by 14.6% and 27.4% following P and NP addition, respectively. The interaction of NP addition had a significant influence on CO2 flux during the non-growing season and the spring thaw period. Compared to the control, CH4 flux decreased by 9.9%, 23.2% and 26.7% following N, P and NP additions, respectively, and no interactive effect of NP addition was found in any period. Soil N2O flux was significantly increased 2.6 fold and 3.3 fold, following N and NP addition treatments, respectively, and there was no interaction effect of NP addition together. The contribution of cumulative CO2 emission during the non-growing season was less than 20% of the annual budget, but cumulative CH4 and N2O emissions during the same period can account for 37.3–48.9% and 44.7–59.5% of the annual budget, respectively. Methane and N2O emissions did not increase greatly during the spring thawing period, with contributions of only 0.4–3.6% and 10.3–12.3% of the annual budget, respectively. Our results suggest that N and P addition could increase CO2 and N2O emissions and reduce CH4 emission. Furthermore, although the non-growing season is very cold and long, cumulative CH4 and N2O emissions are considerable during this period and cannot be neglected by future studies evaluating the greenhouse gas emission budget in the Tibetan plateau.


Sign in / Sign up

Export Citation Format

Share Document