Determination of an optimal pinch point temperature difference interval in ORC power plant using multi-objective approach

2019 ◽  
Vol 217 ◽  
pp. 798-807 ◽  
Author(s):  
Marcin Jankowski ◽  
Aleksandra Borsukiewicz ◽  
Katarzyna Szopik-Depczyńska ◽  
Giuseppe Ioppolo
2018 ◽  
Vol 22 (5) ◽  
pp. 2137-2150 ◽  
Author(s):  
Nenad Mustapic ◽  
Vladislav Brkic ◽  
Matija Kerin

This paper is focused both on the thermodynamic and economic analysis of an organic Rankine cycle (ORC) based geothermal power plant. The analysis is applied to a case study of the geothermal field Recica near the city of Karlovac. Simple cycle configuration of the ORC was applied. Thermodynamic and economic performance of an ORC geothermal system using 8 working fluids: R134a, isobutane, R245fa, R601, R601a, R290, R1234yf, and R1234ze(E)], with different critical temperatures are analyzed. The thermodynamic analysis is performed on the basis of the analysis of influence of the operation conditions, such as evaporation and condensation temperatures and pressures, and evaporator and con-denser pinch point temperature difference, on the cycle characteristics such as net power output, and plant irreversibility. The economic analysis is performed on the basis of relationship between the net power output and the total cost of equipment used in the ORC. Mathematical models are defined for proposed organic Rankine geothermal power plant, and the analysis is performed by using the software package engineering equation solver. The analysis reveals that the working fluids, n-pentane and isopentane, show the best economic performances, regardless the evaporation temperatures, while the working fluid R1234yf and R290 have the best thermodynamic performances. In addition, each analyzed working fluid has its corresponding economically optimal condensation temperature (and condensation pressure). Economically optimal pinch point temperature difference of evaporator has different values, depending on the working fluid, while pinch point temperature difference of condenser has similar values for all analyzed working fluids. Analysis results demonstrate that the subcritical ORC geothermal power plant represents a promising option for electricity production application.


Energy ◽  
2017 ◽  
Vol 141 ◽  
pp. 97-107 ◽  
Author(s):  
Jiansheng Wang ◽  
Mengzhen Diao ◽  
Kaihong Yue

2004 ◽  
Vol 3 (2) ◽  
Author(s):  
F. S. Liporace ◽  
F. L. P. Pessoa ◽  
E. M. Queiroz

The Pinch Design Method was developed considering one-phase streams, with constant specific heats (Cp) throughout streams’ temperature ranges. Its first stage, the determination of utilities targets and pinch point (PP), is ruled by the number of streams, their temperatures and MCp. But, for changing phase streams, the usual description of the Cp behavior by a constant value can lead to errors in this stage and, hence, in the synthesis one. This work proposes a procedure to deal with these streams and discusses its results through an example involving multicomponent streams. First, bubble (BP) and dew (DP) points of the streams are estimated. Then, changing phase streams are split into sub-streams, using BP and DP as bounds. For each one, an effective Cp is estimated as the division of the enthalpy change by the respective temperature difference. Results obtained show significant changes on the PP, utilities targets and network proposed structure.


Sign in / Sign up

Export Citation Format

Share Document