Study on kinetics-thermodynamics and environmental parameter of biodiesel production from waste cooking oil and castor oil using potassium modified ceria oxide catalyst

2020 ◽  
Vol 247 ◽  
pp. 119166 ◽  
Author(s):  
Tania Roy ◽  
Shalini Sahani ◽  
Yogesh Chandra Sharma
Author(s):  
Mansoor Anbia ◽  
Sotoudeh Sedaghat ◽  
Samira Saleh ◽  
Sholeh Masoomi

The synthesized nanomaterials by two different methods were used as a catalyst in the transesterification of waste cooking oil to produce biodiesel. For both environmental and economic reasons, it is beneficial to produce biodiesel from waste cooking oils. It is desirable to help solve waste oil disposal by utilizing its oils as an inexpensive starting material in biodiesel synthesis. The structure, morphology, and surface properties of resulting nanocatalysts were characterized by X-ray Fluorescence Spectroscopy (XRF), Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Energy Dispersive X-ray Spectroscopy (EDX) and N2 adsorption-desorption isotherms. The synthesized nanocatalysts' efficiency in the production of biodiesel was studied by Gas Chromatography (GC) as well as leaching amounts of surface active components of each catalyst investigated by the EDX technique. The reactions were performed at 65°C using a 9:1 methanol to oil ratio for 3 h. The results indicate that the impregnated mixed metal oxide catalyst ( Ca-MgAl) shows a higher surface area and better mechanical strength than the totally co-precipitated mixed metal oxide catalyst (CaMgAl(O)). Although both of the fully co-precipitated and impregnated catalysts represented about 90% of fatty acid methyl esters (FAME) yield the leaching of active calcium component was significantly reduced from 45.8% in precipitated CaMgAl(O) to 8% for the impregnated Ca-MgAl catalyst. This improved structure represents the advantage of the impregnation technique to co-precipitation procedure for fabrication of robust nanostructures.


Author(s):  
Charishma Venkata Sai Anne ◽  
Karthikeyan S. ◽  
Arun C.

Background: Waste biomass derived reusable heterogeneous acid based catalysts are more suitable to overcome the problems associated with homogeneous catalysts. The use of agricultural biomass as catalyst for transesterification process is more economical and it reduces the overall production cost of biodiesel. The identification of an appropriate suitable catalyst for effective transesterification will be a landmark in biofuel sector Objective: In the present investigation, waste wood biomass was used to prepare a low cost sulfonated solid acid catalyst for the production of biodiesel using waste cooking oil. Methods: The pretreated wood biomass was first calcined then sulfonated with H2SO4. The catalyst was characterized by various analyses such as, Fourier-transform infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS) and X-ray diffraction (XRD). The central composite design (CCD) based response surface methodology (RSM) was applied to study the influence of individual process variables such as temperature, catalyst load, methanol to oil molar ration and reaction time on biodiesel yield. Results: The obtained optimized conditions are as follows: temperature (165 ˚C), catalyst loading (1.625 wt%), methanol to oil molar ratio (15:1) and reaction time (143 min) with a maximum biodiesel yield of 95 %. The Gas chromatographymass spectrometry (GC-MS) analysis of biodiesel produced from waste cooking oil was showed that it has a mixture of both monounsaturated and saturated methyl esters. Conclusion: Thus the waste wood biomass derived heterogeneous catalyst for the transesterification process of waste cooking oil can be applied for sustainable biodiesel production by adding an additional value for the waste materials and also eliminating the disposable problem of waste oils.


2021 ◽  
Vol 170 ◽  
pp. 302-314
Author(s):  
Adeyinka S. Yusuff ◽  
Aman K. Bhonsle ◽  
Jayati Trivedi ◽  
Dinesh P. Bangwal ◽  
Lok P. Singh ◽  
...  

ACS Omega ◽  
2021 ◽  
Vol 6 (13) ◽  
pp. 9204-9212
Author(s):  
Neelam Khan ◽  
Sang H. Park ◽  
Lorraine Kadima ◽  
Carlove Bourdeau ◽  
Evelyn Calina ◽  
...  

Author(s):  
Shahabaldin Rezania ◽  
Zahra Sotoudehnia Korrani ◽  
Mohammad Ali Gabris ◽  
Jinwoo Cho ◽  
Krsihna Kumar Yadav ◽  
...  

2015 ◽  
Vol 77 ◽  
pp. 521-526 ◽  
Author(s):  
Zahoor Ullah ◽  
Mohamad Azmi Bustam ◽  
Zakaria Man

2015 ◽  
Vol 1113 ◽  
pp. 674-678
Author(s):  
Syarifah Yunus ◽  
Noriah Yusoff ◽  
Muhammad Faiz Fikri Ahmad Khaidzir ◽  
Siti Khadijah Alias ◽  
Freddawati Rashiddy Wong ◽  
...  

The continued using of petroleum energy as a sourced for fuel is widely recognized as unsustainable because of the decreasing of supplies while increasing of the demand. Therefore, it becomes a global agenda to develop a renewable, sustainable and alternative fuel to meets with all the demand. Thus, biodiesel seems to be one of the best choices. In Malaysia, the biodiesel used is from edible vegetable oil sources; palm oil. The uses of palm oil as biodiesel production source have been concern because of the competition with food materials. In this study, various types of biodiesel feedstock are being studied and compared with diesel. The purpose of this comparison is to obtain the optimum engine performance of these different types of biodiesel (edible, non-edible, waste cooking oil) on which are more suitable to be used as alternative fuel. The optimum engine performance effect can be obtains by considering the Brake Power (BP), Specific Fuel Consumption (SFC), Exhaust Gas Temperature (EGT) and Brake Thermal Efficiency (BTE).


Sign in / Sign up

Export Citation Format

Share Document