Intelligent diagnosis of natural gas pipeline defects using improved flower pollination algorithm and artificial neural network

2020 ◽  
Vol 264 ◽  
pp. 121655 ◽  
Author(s):  
Xiaobin Liang ◽  
Wei Liang ◽  
Jingyi Xiong
2018 ◽  
Vol 29 (1) ◽  
pp. 787-798 ◽  
Author(s):  
Pijush Dutta ◽  
Asok Kumar

Abstract Controlling liquid flow is one of the most important parameters in the process control industry. It is challenging to optimize the liquid flow rate for its highly nonlinear nature. This paper proposes a model of liquid flow processes using an artificial neural network (NN) and optimizes it using a flower pollination algorithm (FPA) to avoid local minima and improve the accuracy and convergence speed. In the first phase, the NN model was trained by the dataset obtained from the experiments, which were carried out. In these conditions, the liquid flow rate was measured at different sensor output voltages, pipe diameter and liquid conductivity. The model response was cross-verified with the experimental results and found to be satisfactory. In the second phase of work, the optimized conditions of sensor output voltages, pipe diameter and liquid conductivity were found to give the minimum flow rate of the process using FPA. After cross-validation and testing subdatasets, the accuracy was nearly 94.17% and 99.25%, respectively.


2018 ◽  
Vol 140 (11) ◽  
Author(s):  
Abhishek Paul ◽  
Subrata Bhowmik ◽  
Rajsekhar Panua ◽  
Durbadal Debroy

The present study surveys the effects on performance and emission parameters of a partially modified single cylinder direct injection (DI) diesel engine fueled with diesohol blends under varying compressed natural gas (CNG) flowrates in dual fuel mode. Based on experimental data, an artificial intelligence (AI) specialized artificial neural network (ANN) model have been developed for predicting the output parameters, viz. brake thermal efficiency (Bth), brake-specific energy consumption (BSEC) along with emission characteristics such as oxides of nitrogen (NOx), unburned hydrocarbon (UBHC), carbon dioxide (CO2), and carbon monoxide (CO) emissions. Engine load, Ethanol share, and CNG strategies have been used as input parameters for the model. Among the tested models, the Levenberg–Marquardt feed-forward back propagation with three input neurons or nodes, two hidden layers with ten neurons in each layer and six output neurons, and tansig-purelin activation function have been found to the optimal model topology for the diesohol–CNG platforms. The statistical results acquired from the optimal network topology such as correlation coefficient (0.992–0.999), mean square error (MSE) (0.0001–0.0009), and mean absolute percentage error (MAPE) (0.09–2.41%) along with Nash–Sutcliffe coefficient of efficiency (NSE), Kling–Gupta efficiency (KGE), mean square relative error, and model uncertainty established itself as a real-time robust type machine learning tool under diesohol–CNG paradigms. The study also incorporated a special type of measure, namely Pearson's Chi-square test or goodness of fit, which brings up the model validation to a higher level.


Sign in / Sign up

Export Citation Format

Share Document